Vulnerabilities (CVE)

Filtered by vendor Linux Subscribe
Total 10223 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2023-52733 1 Linux 1 Linux Kernel 2025-04-02 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: s390/decompressor: specify __decompress() buf len to avoid overflow Historically calls to __decompress() didn't specify "out_len" parameter on many architectures including s390, expecting that no writes beyond uncompressed kernel image are performed. This has changed since commit 2aa14b1ab2c4 ("zstd: import usptream v1.5.2") which includes zstd library commit 6a7ede3dfccb ("Reduce size of dctx by reutilizing dst buffer (#2751)"). Now zstd decompression code might store literal buffer in the unwritten portion of the destination buffer. Since "out_len" is not set, it is considered to be unlimited and hence free to use for optimization needs. On s390 this might corrupt initrd or ipl report which are often placed right after the decompressor buffer. Luckily the size of uncompressed kernel image is already known to the decompressor, so to avoid the problem simply specify it in the "out_len" parameter.
CVE-2023-52735 1 Linux 1 Linux Kernel 2025-04-02 N/A 9.1 CRITICAL
In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: Don't let sock_map_{close,destroy,unhash} call itself sock_map proto callbacks should never call themselves by design. Protect against bugs like [1] and break out of the recursive loop to avoid a stack overflow in favor of a resource leak. [1] https://lore.kernel.org/all/00000000000073b14905ef2e7401@google.com/
CVE-2023-52738 1 Linux 1 Linux Kernel 2025-04-02 N/A 5.3 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu/fence: Fix oops due to non-matching drm_sched init/fini Currently amdgpu calls drm_sched_fini() from the fence driver sw fini routine - such function is expected to be called only after the respective init function - drm_sched_init() - was executed successfully. Happens that we faced a driver probe failure in the Steam Deck recently, and the function drm_sched_fini() was called even without its counter-part had been previously called, causing the following oops: amdgpu: probe of 0000:04:00.0 failed with error -110 BUG: kernel NULL pointer dereference, address: 0000000000000090 PGD 0 P4D 0 Oops: 0002 [#1] PREEMPT SMP NOPTI CPU: 0 PID: 609 Comm: systemd-udevd Not tainted 6.2.0-rc3-gpiccoli #338 Hardware name: Valve Jupiter/Jupiter, BIOS F7A0113 11/04/2022 RIP: 0010:drm_sched_fini+0x84/0xa0 [gpu_sched] [...] Call Trace: <TASK> amdgpu_fence_driver_sw_fini+0xc8/0xd0 [amdgpu] amdgpu_device_fini_sw+0x2b/0x3b0 [amdgpu] amdgpu_driver_release_kms+0x16/0x30 [amdgpu] devm_drm_dev_init_release+0x49/0x70 [...] To prevent that, check if the drm_sched was properly initialized for a given ring before calling its fini counter-part. Notice ideally we'd use sched.ready for that; such field is set as the latest thing on drm_sched_init(). But amdgpu seems to "override" the meaning of such field - in the above oops for example, it was a GFX ring causing the crash, and the sched.ready field was set to true in the ring init routine, regardless of the state of the DRM scheduler. Hence, we ended-up using sched.ops as per Christian's suggestion [0], and also removed the no_scheduler check [1]. [0] https://lore.kernel.org/amd-gfx/984ee981-2906-0eaf-ccec-9f80975cb136@amd.com/ [1] https://lore.kernel.org/amd-gfx/cd0e2994-f85f-d837-609f-7056d5fb7231@amd.com/
CVE-2023-52746 1 Linux 1 Linux Kernel 2025-04-02 N/A 2.5 LOW
In the Linux kernel, the following vulnerability has been resolved: xfrm/compat: prevent potential spectre v1 gadget in xfrm_xlate32_attr() int type = nla_type(nla); if (type > XFRMA_MAX) { return -EOPNOTSUPP; } @type is then used as an array index and can be used as a Spectre v1 gadget. if (nla_len(nla) < compat_policy[type].len) { array_index_nospec() can be used to prevent leaking content of kernel memory to malicious users.
CVE-2023-52755 1 Linux 1 Linux Kernel 2025-04-02 N/A 8.4 HIGH
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix slab out of bounds write in smb_inherit_dacl() slab out-of-bounds write is caused by that offsets is bigger than pntsd allocation size. This patch add the check to validate 3 offsets using allocation size.
CVE-2021-47284 1 Linux 1 Linux Kernel 2025-04-02 N/A 4.7 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: isdn: mISDN: netjet: Fix crash in nj_probe: 'nj_setup' in netjet.c might fail with -EIO and in this case 'card->irq' is initialized and is bigger than zero. A subsequent call to 'nj_release' will free the irq that has not been requested. Fix this bug by deleting the previous assignment to 'card->irq' and just keep the assignment before 'request_irq'. The KASAN's log reveals it: [ 3.354615 ] WARNING: CPU: 0 PID: 1 at kernel/irq/manage.c:1826 free_irq+0x100/0x480 [ 3.355112 ] Modules linked in: [ 3.355310 ] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.13.0-rc1-00144-g25a1298726e #13 [ 3.355816 ] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 [ 3.356552 ] RIP: 0010:free_irq+0x100/0x480 [ 3.356820 ] Code: 6e 08 74 6f 4d 89 f4 e8 5e ac 09 00 4d 8b 74 24 18 4d 85 f6 75 e3 e8 4f ac 09 00 8b 75 c8 48 c7 c7 78 c1 2e 85 e8 e0 cf f5 ff <0f> 0b 48 8b 75 c0 4c 89 ff e8 72 33 0b 03 48 8b 43 40 4c 8b a0 80 [ 3.358012 ] RSP: 0000:ffffc90000017b48 EFLAGS: 00010082 [ 3.358357 ] RAX: 0000000000000000 RBX: ffff888104dc8000 RCX: 0000000000000000 [ 3.358814 ] RDX: ffff8881003c8000 RSI: ffffffff8124a9e6 RDI: 00000000ffffffff [ 3.359272 ] RBP: ffffc90000017b88 R08: 0000000000000000 R09: 0000000000000000 [ 3.359732 ] R10: ffffc900000179f0 R11: 0000000000001d04 R12: 0000000000000000 [ 3.360195 ] R13: ffff888107dc6000 R14: ffff888107dc6928 R15: ffff888104dc80a8 [ 3.360652 ] FS: 0000000000000000(0000) GS:ffff88817bc00000(0000) knlGS:0000000000000000 [ 3.361170 ] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 3.361538 ] CR2: 0000000000000000 CR3: 000000000582e000 CR4: 00000000000006f0 [ 3.362003 ] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 3.362175 ] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 3.362175 ] Call Trace: [ 3.362175 ] nj_release+0x51/0x1e0 [ 3.362175 ] nj_probe+0x450/0x950 [ 3.362175 ] ? pci_device_remove+0x110/0x110 [ 3.362175 ] local_pci_probe+0x45/0xa0 [ 3.362175 ] pci_device_probe+0x12b/0x1d0 [ 3.362175 ] really_probe+0x2a9/0x610 [ 3.362175 ] driver_probe_device+0x90/0x1d0 [ 3.362175 ] ? mutex_lock_nested+0x1b/0x20 [ 3.362175 ] device_driver_attach+0x68/0x70 [ 3.362175 ] __driver_attach+0x124/0x1b0 [ 3.362175 ] ? device_driver_attach+0x70/0x70 [ 3.362175 ] bus_for_each_dev+0xbb/0x110 [ 3.362175 ] ? rdinit_setup+0x45/0x45 [ 3.362175 ] driver_attach+0x27/0x30 [ 3.362175 ] bus_add_driver+0x1eb/0x2a0 [ 3.362175 ] driver_register+0xa9/0x180 [ 3.362175 ] __pci_register_driver+0x82/0x90 [ 3.362175 ] ? w6692_init+0x38/0x38 [ 3.362175 ] nj_init+0x36/0x38 [ 3.362175 ] do_one_initcall+0x7f/0x3d0 [ 3.362175 ] ? rdinit_setup+0x45/0x45 [ 3.362175 ] ? rcu_read_lock_sched_held+0x4f/0x80 [ 3.362175 ] kernel_init_freeable+0x2aa/0x301 [ 3.362175 ] ? rest_init+0x2c0/0x2c0 [ 3.362175 ] kernel_init+0x18/0x190 [ 3.362175 ] ? rest_init+0x2c0/0x2c0 [ 3.362175 ] ? rest_init+0x2c0/0x2c0 [ 3.362175 ] ret_from_fork+0x1f/0x30 [ 3.362175 ] Kernel panic - not syncing: panic_on_warn set ... [ 3.362175 ] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.13.0-rc1-00144-g25a1298726e #13 [ 3.362175 ] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 [ 3.362175 ] Call Trace: [ 3.362175 ] dump_stack+0xba/0xf5 [ 3.362175 ] ? free_irq+0x100/0x480 [ 3.362175 ] panic+0x15a/0x3f2 [ 3.362175 ] ? __warn+0xf2/0x150 [ 3.362175 ] ? free_irq+0x100/0x480 [ 3.362175 ] __warn+0x108/0x150 [ 3.362175 ] ? free_irq+0x100/0x480 [ 3.362175 ] report_bug+0x119/0x1c0 [ 3.362175 ] handle_bug+0x3b/0x80 [ 3.362175 ] exc_invalid_op+0x18/0x70 [ 3.362175 ] asm_exc_invalid_op+0x12/0x20 [ 3.362175 ] RIP: 0010:free_irq+0x100 ---truncated---
CVE-2021-47295 1 Linux 1 Linux Kernel 2025-04-02 N/A 7.5 HIGH
In the Linux kernel, the following vulnerability has been resolved: net: sched: fix memory leak in tcindex_partial_destroy_work Syzbot reported memory leak in tcindex_set_parms(). The problem was in non-freed perfect hash in tcindex_partial_destroy_work(). In tcindex_set_parms() new tcindex_data is allocated and some fields from old one are copied to new one, but not the perfect hash. Since tcindex_partial_destroy_work() is the destroy function for old tcindex_data, we need to free perfect hash to avoid memory leak.
CVE-2021-47297 1 Linux 1 Linux Kernel 2025-04-02 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: net: fix uninit-value in caif_seqpkt_sendmsg When nr_segs equal to zero in iovec_from_user, the object msg->msg_iter.iov is uninit stack memory in caif_seqpkt_sendmsg which is defined in ___sys_sendmsg. So we cann't just judge msg->msg_iter.iov->base directlly. We can use nr_segs to judge msg in caif_seqpkt_sendmsg whether has data buffers. ===================================================== BUG: KMSAN: uninit-value in caif_seqpkt_sendmsg+0x693/0xf60 net/caif/caif_socket.c:542 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1c9/0x220 lib/dump_stack.c:118 kmsan_report+0xf7/0x1e0 mm/kmsan/kmsan_report.c:118 __msan_warning+0x58/0xa0 mm/kmsan/kmsan_instr.c:215 caif_seqpkt_sendmsg+0x693/0xf60 net/caif/caif_socket.c:542 sock_sendmsg_nosec net/socket.c:652 [inline] sock_sendmsg net/socket.c:672 [inline] ____sys_sendmsg+0x12b6/0x1350 net/socket.c:2343 ___sys_sendmsg net/socket.c:2397 [inline] __sys_sendmmsg+0x808/0xc90 net/socket.c:2480 __compat_sys_sendmmsg net/compat.c:656 [inline]
CVE-2021-47308 1 Linux 1 Linux Kernel 2025-04-02 N/A 6.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: scsi: libfc: Fix array index out of bound exception Fix array index out of bound exception in fc_rport_prli_resp().
CVE-2021-47312 1 Linux 1 Linux Kernel 2025-04-02 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: Fix dereference of null pointer flow In the case where chain->flags & NFT_CHAIN_HW_OFFLOAD is false then nft_flow_rule_create is not called and flow is NULL. The subsequent error handling execution via label err_destroy_flow_rule will lead to a null pointer dereference on flow when calling nft_flow_rule_destroy. Since the error path to err_destroy_flow_rule has to cater for null and non-null flows, only call nft_flow_rule_destroy if flow is non-null to fix this issue. Addresses-Coverity: ("Explicity null dereference")
CVE-2021-47313 1 Linux 1 Linux Kernel 2025-04-02 N/A 8.4 HIGH
In the Linux kernel, the following vulnerability has been resolved: cpufreq: CPPC: Fix potential memleak in cppc_cpufreq_cpu_init It's a classic example of memleak, we allocate something, we fail and never free the resources. Make sure we free all resources on policy ->init() failures.
CVE-2021-47323 1 Linux 1 Linux Kernel 2025-04-02 N/A 8.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: watchdog: sc520_wdt: Fix possible use-after-free in wdt_turnoff() This module's remove path calls del_timer(). However, that function does not wait until the timer handler finishes. This means that the timer handler may still be running after the driver's remove function has finished, which would result in a use-after-free. Fix by calling del_timer_sync(), which makes sure the timer handler has finished, and unable to re-schedule itself.
CVE-2021-47324 1 Linux 1 Linux Kernel 2025-04-02 N/A 8.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: watchdog: Fix possible use-after-free in wdt_startup() This module's remove path calls del_timer(). However, that function does not wait until the timer handler finishes. This means that the timer handler may still be running after the driver's remove function has finished, which would result in a use-after-free. Fix by calling del_timer_sync(), which makes sure the timer handler has finished, and unable to re-schedule itself.
CVE-2021-47327 1 Linux 1 Linux Kernel 2025-04-02 N/A 7.1 HIGH
In the Linux kernel, the following vulnerability has been resolved: iommu/arm-smmu: Fix arm_smmu_device refcount leak when arm_smmu_rpm_get fails arm_smmu_rpm_get() invokes pm_runtime_get_sync(), which increases the refcount of the "smmu" even though the return value is less than 0. The reference counting issue happens in some error handling paths of arm_smmu_rpm_get() in its caller functions. When arm_smmu_rpm_get() fails, the caller functions forget to decrease the refcount of "smmu" increased by arm_smmu_rpm_get(), causing a refcount leak. Fix this issue by calling pm_runtime_resume_and_get() instead of pm_runtime_get_sync() in arm_smmu_rpm_get(), which can keep the refcount balanced in case of failure.
CVE-2021-47329 1 Linux 1 Linux Kernel 2025-04-02 N/A 6.2 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: scsi: megaraid_sas: Fix resource leak in case of probe failure The driver doesn't clean up all the allocated resources properly when scsi_add_host(), megasas_start_aen() function fails during the PCI device probe. Clean up all those resources.
CVE-2021-47333 1 Linux 1 Linux Kernel 2025-04-02 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: misc: alcor_pci: fix null-ptr-deref when there is no PCI bridge There is an issue with the ASPM(optional) capability checking function. A device might be attached to root complex directly, in this case, bus->self(bridge) will be NULL, thus priv->parent_pdev is NULL. Since alcor_pci_init_check_aspm(priv->parent_pdev) checks the PCI link's ASPM capability and populate parent_cap_off, which will be used later by alcor_pci_aspm_ctrl() to dynamically turn on/off device, what we can do here is to avoid checking the capability if we are on the root complex. This will make pdev_cap_off 0 and alcor_pci_aspm_ctrl() will simply return when bring called, effectively disable ASPM for the device. [ 1.246492] BUG: kernel NULL pointer dereference, address: 00000000000000c0 [ 1.248731] RIP: 0010:pci_read_config_byte+0x5/0x40 [ 1.253998] Call Trace: [ 1.254131] ? alcor_pci_find_cap_offset.isra.0+0x3a/0x100 [alcor_pci] [ 1.254476] alcor_pci_probe+0x169/0x2d5 [alcor_pci]
CVE-2021-47347 1 Linux 1 Linux Kernel 2025-04-02 N/A 8.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: wl1251: Fix possible buffer overflow in wl1251_cmd_scan Function wl1251_cmd_scan calls memcpy without checking the length. Harden by checking the length is within the maximum allowed size.
CVE-2021-47348 1 Linux 1 Linux Kernel 2025-04-02 N/A 9.1 CRITICAL
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Avoid HDCP over-read and corruption Instead of reading the desired 5 bytes of the actual target field, the code was reading 8. This could result in a corrupted value if the trailing 3 bytes were non-zero, so instead use an appropriately sized and zero-initialized bounce buffer, and read only 5 bytes before casting to u64.
CVE-2024-26830 1 Linux 1 Linux Kernel 2025-04-02 N/A 6.3 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: i40e: Do not allow untrusted VF to remove administratively set MAC Currently when PF administratively sets VF's MAC address and the VF is put down (VF tries to delete all MACs) then the MAC is removed from MAC filters and primary VF MAC is zeroed. Do not allow untrusted VF to remove primary MAC when it was set administratively by PF. Reproducer: 1) Create VF 2) Set VF interface up 3) Administratively set the VF's MAC 4) Put VF interface down [root@host ~]# echo 1 > /sys/class/net/enp2s0f0/device/sriov_numvfs [root@host ~]# ip link set enp2s0f0v0 up [root@host ~]# ip link set enp2s0f0 vf 0 mac fe:6c:b5:da:c7:7d [root@host ~]# ip link show enp2s0f0 23: enp2s0f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT group default qlen 1000 link/ether 3c:ec:ef:b7:dd:04 brd ff:ff:ff:ff:ff:ff vf 0 link/ether fe:6c:b5:da:c7:7d brd ff:ff:ff:ff:ff:ff, spoof checking on, link-state auto, trust off [root@host ~]# ip link set enp2s0f0v0 down [root@host ~]# ip link show enp2s0f0 23: enp2s0f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT group default qlen 1000 link/ether 3c:ec:ef:b7:dd:04 brd ff:ff:ff:ff:ff:ff vf 0 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff, spoof checking on, link-state auto, trust off
CVE-2024-26831 1 Linux 1 Linux Kernel 2025-04-02 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: net/handshake: Fix handshake_req_destroy_test1 Recently, handshake_req_destroy_test1 started failing: Expected handshake_req_destroy_test == req, but handshake_req_destroy_test == 0000000000000000 req == 0000000060f99b40 not ok 11 req_destroy works This is because "sock_release(sock)" was replaced with "fput(filp)" to address a memory leak. Note that sock_release() is synchronous but fput() usually delays the final close and clean-up. The delay is not consequential in the other cases that were changed but handshake_req_destroy_test1 is testing that handshake_req_cancel() followed by closing the file actually does call the ->hp_destroy method. Thus the PTR_EQ test at the end has to be sure that the final close is complete before it checks the pointer. We cannot use a completion here because if ->hp_destroy is never called (ie, there is an API bug) then the test will hang. Reported by: Guenter Roeck <linux@roeck-us.net>