Total
7727 CVE
| CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
|---|---|---|---|---|---|
| CVE-2022-49844 | 1 Linux | 1 Linux Kernel | 2025-10-01 | N/A | 7.1 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: can: dev: fix skb drop check In commit a6d190f8c767 ("can: skb: drop tx skb if in listen only mode") the priv->ctrlmode element is read even on virtual CAN interfaces that do not create the struct can_priv at startup. This out-of-bounds read may lead to CAN frame drops for virtual CAN interfaces like vcan and vxcan. This patch mainly reverts the original commit and adds a new helper for CAN interface drivers that provide the required information in struct can_priv. [mkl: patch pch_can, too] | |||||
| CVE-2025-49133 | 1 Libtpms Project | 1 Libtpms | 2025-10-01 | N/A | 5.9 MEDIUM |
| Libtpms is a library that targets the integration of TPM functionality into hypervisors, primarily into Qemu. Libtpms, which is derived from the TPM 2.0 reference implementation code published by the Trusted Computing Group, is prone to a potential out of bounds (OOB) read vulnerability. The vulnerability occurs in the ‘CryptHmacSign’ function with an inconsistent pairing of the signKey and signScheme parameters, where the signKey is ALG_KEYEDHASH key and inScheme is an ECC or RSA scheme. The reported vulnerability is in the ‘CryptHmacSign’ function, which is defined in the "Part 4: Supporting Routines – Code" document, section "7.151 - /tpm/src/crypt/CryptUtil.c ". This vulnerability can be triggered from user-mode applications by sending malicious commands to a TPM 2.0/vTPM (swtpm) whose firmware is based on an affected TCG reference implementation. The effect on libtpms is that it will cause an abort due to the detection of the out-of-bounds access, thus for example making a vTPM (swtpm) unavailable to a VM. This vulnerability is fixed in 0.7.12, 0.8.10, 0.9.7, and 0.10.1. | |||||
| CVE-2020-11910 | 1 Treck | 1 Tcp\/ip | 2025-09-30 | 5.0 MEDIUM | 5.3 MEDIUM |
| The Treck TCP/IP stack before 6.0.1.66 has an ICMPv4 Out-of-bounds Read. | |||||
| CVE-2020-27336 | 1 Treck | 1 Ipv6 | 2025-09-30 | 5.0 MEDIUM | 3.7 LOW |
| An issue was discovered in Treck IPv6 before 6.0.1.68. Improper input validation in the IPv6 component when handling a packet sent by an unauthenticated remote attacker could result in an out-of-bounds read of up to three bytes via network access. | |||||
| CVE-2024-48958 | 1 Libarchive | 1 Libarchive | 2025-09-29 | N/A | 7.8 HIGH |
| execute_filter_delta in archive_read_support_format_rar.c in libarchive before 3.7.5 allows out-of-bounds access via a crafted archive file because src can move beyond dst. | |||||
| CVE-2024-48957 | 1 Libarchive | 1 Libarchive | 2025-09-29 | N/A | 7.8 HIGH |
| execute_filter_audio in archive_read_support_format_rar.c in libarchive before 3.7.5 allows out-of-bounds access via a crafted archive file because src can move beyond dst. | |||||
| CVE-2025-35995 | 1 F5 | 1 Big-ip Policy Enforcement Manager | 2025-09-29 | N/A | 7.5 HIGH |
| When a BIG-IP PEM system is licensed with URL categorization, and the URL categorization policy or an iRule with the urlcat command is enabled on a virtual server, undisclosed requests can cause the Traffic Management Microkernel (TMM) to terminate. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated. | |||||
| CVE-2025-7698 | 2025-09-29 | N/A | 5.9 MEDIUM | ||
| Out-of-bounds read vulnerabilities in print processing of Generic Plus PCL6 Printer Driver / Generic Plus UFR II Printer Driver / Generic Plus LIPS4 Printer Driver / Generic Plus LIPSLX Printer Driver / Generic Plus PS Printer Driver | |||||
| CVE-2022-48738 | 1 Linux | 1 Linux Kernel | 2025-09-29 | N/A | 7.1 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: ASoC: ops: Reject out of bounds values in snd_soc_put_volsw() We don't currently validate that the values being set are within the range we advertised to userspace as being valid, do so and reject any values that are out of range. | |||||
| CVE-2024-57822 | 1 Librdf | 1 Raptor Rdf Syntax Library | 2025-09-29 | N/A | 4.0 MEDIUM |
| In Raptor RDF Syntax Library through 2.0.16, there is a heap-based buffer over-read when parsing triples with the nquads parser in raptor_ntriples_parse_term_internal(). | |||||
| CVE-2024-0116 | 2 Linux, Nvidia | 2 Linux Kernel, Triton Inference Server | 2025-09-29 | N/A | 4.9 MEDIUM |
| NVIDIA Triton Inference Server contains a vulnerability where a user may cause an out-of-bounds read issue by releasing a shared memory region while it is in use. A successful exploit of this vulnerability may lead to denial of service. | |||||
| CVE-2024-42293 | 1 Linux | 1 Linux Kernel | 2025-09-29 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: arm64: mm: Fix lockless walks with static and dynamic page-table folding Lina reports random oopsen originating from the fast GUP code when 16K pages are used with 4-level page-tables, the fourth level being folded at runtime due to lack of LPA2. In this configuration, the generic implementation of p4d_offset_lockless() will return a 'p4d_t *' corresponding to the 'pgd_t' allocated on the stack of the caller, gup_fast_pgd_range(). This is normally fine, but when the fourth level of page-table is folded at runtime, pud_offset_lockless() will offset from the address of the 'p4d_t' to calculate the address of the PUD in the same page-table page. This results in a stray stack read when the 'p4d_t' has been allocated on the stack and can send the walker into the weeds. Fix the problem by providing our own definition of p4d_offset_lockless() when CONFIG_PGTABLE_LEVELS <= 4 which returns the real page-table pointer rather than the address of the local stack variable. | |||||
| CVE-2024-42305 | 1 Linux | 1 Linux Kernel | 2025-09-29 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: ext4: check dot and dotdot of dx_root before making dir indexed Syzbot reports a issue as follows: ============================================ BUG: unable to handle page fault for address: ffffed11022e24fe PGD 23ffee067 P4D 23ffee067 PUD 0 Oops: Oops: 0000 [#1] PREEMPT SMP KASAN PTI CPU: 0 PID: 5079 Comm: syz-executor306 Not tainted 6.10.0-rc5-g55027e689933 #0 Call Trace: <TASK> make_indexed_dir+0xdaf/0x13c0 fs/ext4/namei.c:2341 ext4_add_entry+0x222a/0x25d0 fs/ext4/namei.c:2451 ext4_rename fs/ext4/namei.c:3936 [inline] ext4_rename2+0x26e5/0x4370 fs/ext4/namei.c:4214 [...] ============================================ The immediate cause of this problem is that there is only one valid dentry for the block to be split during do_split, so split==0 results in out of bounds accesses to the map triggering the issue. do_split unsigned split dx_make_map count = 1 split = count/2 = 0; continued = hash2 == map[split - 1].hash; ---> map[4294967295] The maximum length of a filename is 255 and the minimum block size is 1024, so it is always guaranteed that the number of entries is greater than or equal to 2 when do_split() is called. But syzbot's crafted image has no dot and dotdot in dir, and the dentry distribution in dirblock is as follows: bus dentry1 hole dentry2 free |xx--|xx-------------|...............|xx-------------|...............| 0 12 (8+248)=256 268 256 524 (8+256)=264 788 236 1024 So when renaming dentry1 increases its name_len length by 1, neither hole nor free is sufficient to hold the new dentry, and make_indexed_dir() is called. In make_indexed_dir() it is assumed that the first two entries of the dirblock must be dot and dotdot, so bus and dentry1 are left in dx_root because they are treated as dot and dotdot, and only dentry2 is moved to the new leaf block. That's why count is equal to 1. Therefore add the ext4_check_dx_root() helper function to add more sanity checks to dot and dotdot before starting the conversion to avoid the above issue. | |||||
| CVE-2024-42118 | 1 Linux | 1 Linux Kernel | 2025-09-29 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Do not return negative stream id for array [WHY] resource_stream_to_stream_idx returns an array index and it return -1 when not found; however, -1 is not a valid array index number. [HOW] When this happens, call ASSERT(), and return a zero instead. This fixes an OVERRUN and an NEGATIVE_RETURNS issues reported by Coverity. | |||||
| CVE-2024-56706 | 1 Linux | 1 Linux Kernel | 2025-09-26 | N/A | 6.3 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: s390/cpum_sf: Fix and protect memory allocation of SDBs with mutex Reservation of the PMU hardware is done at first event creation and is protected by a pair of mutex_lock() and mutex_unlock(). After reservation of the PMU hardware the memory required for the PMUs the event is to be installed on is allocated by allocate_buffers() and alloc_sampling_buffer(). This done outside of the mutex protection. Without mutex protection two or more concurrent invocations of perf_event_init() may run in parallel. This can lead to allocation of Sample Data Blocks (SDBs) multiple times for the same PMU. Prevent this and protect memory allocation of SDBs by mutex. | |||||
| CVE-2025-21647 | 1 Linux | 1 Linux Kernel | 2025-09-26 | N/A | 7.1 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: sched: sch_cake: add bounds checks to host bulk flow fairness counts Even though we fixed a logic error in the commit cited below, syzbot still managed to trigger an underflow of the per-host bulk flow counters, leading to an out of bounds memory access. To avoid any such logic errors causing out of bounds memory accesses, this commit factors out all accesses to the per-host bulk flow counters to a series of helpers that perform bounds-checking before any increments and decrements. This also has the benefit of improving readability by moving the conditional checks for the flow mode into these helpers, instead of having them spread out throughout the code (which was the cause of the original logic error). As part of this change, the flow quantum calculation is consolidated into a helper function, which means that the dithering applied to the ost load scaling is now applied both in the DRR rotation and when a sparse flow's quantum is first initiated. The only user-visible effect of this is that the maximum packet size that can be sent while a flow stays sparse will now vary with +/- one byte in some cases. This should not make a noticeable difference in practice, and thus it's not worth complicating the code to preserve the old behaviour. | |||||
| CVE-2024-28319 | 1 Gpac | 1 Gpac | 2025-09-26 | N/A | 6.2 MEDIUM |
| gpac 2.3-DEV-rev921-g422b78ecf-master was discovered to contain an out of boundary read vulnerability via gf_dash_setup_period media_tools/dash_client.c:6374 | |||||
| CVE-2024-57945 | 1 Linux | 1 Linux Kernel | 2025-09-26 | N/A | 7.1 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: riscv: mm: Fix the out of bound issue of vmemmap address In sparse vmemmap model, the virtual address of vmemmap is calculated as: ((struct page *)VMEMMAP_START - (phys_ram_base >> PAGE_SHIFT)). And the struct page's va can be calculated with an offset: (vmemmap + (pfn)). However, when initializing struct pages, kernel actually starts from the first page from the same section that phys_ram_base belongs to. If the first page's physical address is not (phys_ram_base >> PAGE_SHIFT), then we get an va below VMEMMAP_START when calculating va for it's struct page. For example, if phys_ram_base starts from 0x82000000 with pfn 0x82000, the first page in the same section is actually pfn 0x80000. During init_unavailable_range(), we will initialize struct page for pfn 0x80000 with virtual address ((struct page *)VMEMMAP_START - 0x2000), which is below VMEMMAP_START as well as PCI_IO_END. This commit fixes this bug by introducing a new variable 'vmemmap_start_pfn' which is aligned with memory section size and using it to calculate vmemmap address instead of phys_ram_base. | |||||
| CVE-2024-57928 | 1 Linux | 1 Linux Kernel | 2025-09-26 | N/A | 7.1 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: netfs: Fix enomem handling in buffered reads If netfs_read_to_pagecache() gets an error from either ->prepare_read() or from netfs_prepare_read_iterator(), it needs to decrement ->nr_outstanding, cancel the subrequest and break out of the issuing loop. Currently, it only does this for two of the cases, but there are two more that aren't handled. Fix this by moving the handling to a common place and jumping to it from all four places. This is in preference to inserting a wrapper around netfs_prepare_read_iterator() as proposed by Dmitry Antipov[1]. | |||||
| CVE-2025-46591 | 1 Huawei | 1 Harmonyos | 2025-09-26 | N/A | 6.2 MEDIUM |
| Out-of-bounds data read vulnerability in the authorization module Impact: Successful exploitation of this vulnerability may affect service confidentiality. | |||||
