Vulnerabilities (CVE)

Filtered by vendor Openssl Subscribe
Filtered by product Openssl
Total 254 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2023-4807 1 Openssl 1 Openssl 2025-04-23 N/A 7.8 HIGH
Issue summary: The POLY1305 MAC (message authentication code) implementation contains a bug that might corrupt the internal state of applications on the Windows 64 platform when running on newer X86_64 processors supporting the AVX512-IFMA instructions. Impact summary: If in an application that uses the OpenSSL library an attacker can influence whether the POLY1305 MAC algorithm is used, the application state might be corrupted with various application dependent consequences. The POLY1305 MAC (message authentication code) implementation in OpenSSL does not save the contents of non-volatile XMM registers on Windows 64 platform when calculating the MAC of data larger than 64 bytes. Before returning to the caller all the XMM registers are set to zero rather than restoring their previous content. The vulnerable code is used only on newer x86_64 processors supporting the AVX512-IFMA instructions. The consequences of this kind of internal application state corruption can be various - from no consequences, if the calling application does not depend on the contents of non-volatile XMM registers at all, to the worst consequences, where the attacker could get complete control of the application process. However given the contents of the registers are just zeroized so the attacker cannot put arbitrary values inside, the most likely consequence, if any, would be an incorrect result of some application dependent calculations or a crash leading to a denial of service. The POLY1305 MAC algorithm is most frequently used as part of the CHACHA20-POLY1305 AEAD (authenticated encryption with associated data) algorithm. The most common usage of this AEAD cipher is with TLS protocol versions 1.2 and 1.3 and a malicious client can influence whether this AEAD cipher is used by the server. This implies that server applications using OpenSSL can be potentially impacted. However we are currently not aware of any concrete application that would be affected by this issue therefore we consider this a Low severity security issue. As a workaround the AVX512-IFMA instructions support can be disabled at runtime by setting the environment variable OPENSSL_ia32cap: OPENSSL_ia32cap=:~0x200000 The FIPS provider is not affected by this issue.
CVE-2023-3446 1 Openssl 1 Openssl 2025-04-23 N/A 5.3 MEDIUM
Issue summary: Checking excessively long DH keys or parameters may be very slow. Impact summary: Applications that use the functions DH_check(), DH_check_ex() or EVP_PKEY_param_check() to check a DH key or DH parameters may experience long delays. Where the key or parameters that are being checked have been obtained from an untrusted source this may lead to a Denial of Service. The function DH_check() performs various checks on DH parameters. One of those checks confirms that the modulus ('p' parameter) is not too large. Trying to use a very large modulus is slow and OpenSSL will not normally use a modulus which is over 10,000 bits in length. However the DH_check() function checks numerous aspects of the key or parameters that have been supplied. Some of those checks use the supplied modulus value even if it has already been found to be too large. An application that calls DH_check() and supplies a key or parameters obtained from an untrusted source could be vulernable to a Denial of Service attack. The function DH_check() is itself called by a number of other OpenSSL functions. An application calling any of those other functions may similarly be affected. The other functions affected by this are DH_check_ex() and EVP_PKEY_param_check(). Also vulnerable are the OpenSSL dhparam and pkeyparam command line applications when using the '-check' option. The OpenSSL SSL/TLS implementation is not affected by this issue. The OpenSSL 3.0 and 3.1 FIPS providers are not affected by this issue.
CVE-2023-2975 2 Netapp, Openssl 3 Management Services For Element Software And Netapp Hci, Ontap Select Deploy Administration Utility, Openssl 2025-04-23 N/A 5.3 MEDIUM
Issue summary: The AES-SIV cipher implementation contains a bug that causes it to ignore empty associated data entries which are unauthenticated as a consequence. Impact summary: Applications that use the AES-SIV algorithm and want to authenticate empty data entries as associated data can be misled by removing, adding or reordering such empty entries as these are ignored by the OpenSSL implementation. We are currently unaware of any such applications. The AES-SIV algorithm allows for authentication of multiple associated data entries along with the encryption. To authenticate empty data the application has to call EVP_EncryptUpdate() (or EVP_CipherUpdate()) with NULL pointer as the output buffer and 0 as the input buffer length. The AES-SIV implementation in OpenSSL just returns success for such a call instead of performing the associated data authentication operation. The empty data thus will not be authenticated. As this issue does not affect non-empty associated data authentication and we expect it to be rare for an application to use empty associated data entries this is qualified as Low severity issue.
CVE-2017-3730 2 Openssl, Oracle 7 Openssl, Agile Engineering Data Management, Communications Application Session Controller and 4 more 2025-04-20 5.0 MEDIUM 7.5 HIGH
In OpenSSL 1.1.0 before 1.1.0d, if a malicious server supplies bad parameters for a DHE or ECDHE key exchange then this can result in the client attempting to dereference a NULL pointer leading to a client crash. This could be exploited in a Denial of Service attack.
CVE-2017-3735 2 Debian, Openssl 2 Debian Linux, Openssl 2025-04-20 5.0 MEDIUM 5.3 MEDIUM
While parsing an IPAddressFamily extension in an X.509 certificate, it is possible to do a one-byte overread. This would result in an incorrect text display of the certificate. This bug has been present since 2006 and is present in all versions of OpenSSL before 1.0.2m and 1.1.0g.
CVE-2016-7053 1 Openssl 1 Openssl 2025-04-20 5.0 MEDIUM 7.5 HIGH
In OpenSSL 1.1.0 before 1.1.0c, applications parsing invalid CMS structures can crash with a NULL pointer dereference. This is caused by a bug in the handling of the ASN.1 CHOICE type in OpenSSL 1.1.0 which can result in a NULL value being passed to the structure callback if an attempt is made to free certain invalid encodings. Only CHOICE structures using a callback which do not handle NULL value are affected.
CVE-2017-3738 3 Debian, Nodejs, Openssl 3 Debian Linux, Node.js, Openssl 2025-04-20 4.3 MEDIUM 5.9 MEDIUM
There is an overflow bug in the AVX2 Montgomery multiplication procedure used in exponentiation with 1024-bit moduli. No EC algorithms are affected. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH1024 are considered just feasible, because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be significant. However, for an attack on TLS to be meaningful, the server would have to share the DH1024 private key among multiple clients, which is no longer an option since CVE-2016-0701. This only affects processors that support the AVX2 but not ADX extensions like Intel Haswell (4th generation). Note: The impact from this issue is similar to CVE-2017-3736, CVE-2017-3732 and CVE-2015-3193. OpenSSL version 1.0.2-1.0.2m and 1.1.0-1.1.0g are affected. Fixed in OpenSSL 1.0.2n. Due to the low severity of this issue we are not issuing a new release of OpenSSL 1.1.0 at this time. The fix will be included in OpenSSL 1.1.0h when it becomes available. The fix is also available in commit e502cc86d in the OpenSSL git repository.
CVE-2016-8610 7 Debian, Fujitsu, Netapp and 4 more 53 Debian Linux, M10-1, M10-1 Firmware and 50 more 2025-04-20 5.0 MEDIUM 7.5 HIGH
A denial of service flaw was found in OpenSSL 0.9.8, 1.0.1, 1.0.2 through 1.0.2h, and 1.1.0 in the way the TLS/SSL protocol defined processing of ALERT packets during a connection handshake. A remote attacker could use this flaw to make a TLS/SSL server consume an excessive amount of CPU and fail to accept connections from other clients.
CVE-2016-7055 2 Nodejs, Openssl 2 Node.js, Openssl 2025-04-20 2.6 LOW 5.9 MEDIUM
There is a carry propagating bug in the Broadwell-specific Montgomery multiplication procedure in OpenSSL 1.0.2 and 1.1.0 before 1.1.0c that handles input lengths divisible by, but longer than 256 bits. Analysis suggests that attacks against RSA, DSA and DH private keys are impossible. This is because the subroutine in question is not used in operations with the private key itself and an input of the attacker's direct choice. Otherwise the bug can manifest itself as transient authentication and key negotiation failures or reproducible erroneous outcome of public-key operations with specially crafted input. Among EC algorithms only Brainpool P-512 curves are affected and one presumably can attack ECDH key negotiation. Impact was not analyzed in detail, because pre-requisites for attack are considered unlikely. Namely multiple clients have to choose the curve in question and the server has to share the private key among them, neither of which is default behaviour. Even then only clients that chose the curve will be affected.
CVE-2017-3731 2 Nodejs, Openssl 2 Node.js, Openssl 2025-04-20 5.0 MEDIUM 7.5 HIGH
If an SSL/TLS server or client is running on a 32-bit host, and a specific cipher is being used, then a truncated packet can cause that server or client to perform an out-of-bounds read, usually resulting in a crash. For OpenSSL 1.1.0, the crash can be triggered when using CHACHA20/POLY1305; users should upgrade to 1.1.0d. For Openssl 1.0.2, the crash can be triggered when using RC4-MD5; users who have not disabled that algorithm should update to 1.0.2k.
CVE-2016-7054 1 Openssl 1 Openssl 2025-04-20 5.0 MEDIUM 7.5 HIGH
In OpenSSL 1.1.0 before 1.1.0c, TLS connections using *-CHACHA20-POLY1305 ciphersuites are susceptible to a DoS attack by corrupting larger payloads. This can result in an OpenSSL crash. This issue is not considered to be exploitable beyond a DoS.
CVE-2017-3737 2 Debian, Openssl 2 Debian Linux, Openssl 2025-04-20 4.3 MEDIUM 5.9 MEDIUM
OpenSSL 1.0.2 (starting from version 1.0.2b) introduced an "error state" mechanism. The intent was that if a fatal error occurred during a handshake then OpenSSL would move into the error state and would immediately fail if you attempted to continue the handshake. This works as designed for the explicit handshake functions (SSL_do_handshake(), SSL_accept() and SSL_connect()), however due to a bug it does not work correctly if SSL_read() or SSL_write() is called directly. In that scenario, if the handshake fails then a fatal error will be returned in the initial function call. If SSL_read()/SSL_write() is subsequently called by the application for the same SSL object then it will succeed and the data is passed without being decrypted/encrypted directly from the SSL/TLS record layer. In order to exploit this issue an application bug would have to be present that resulted in a call to SSL_read()/SSL_write() being issued after having already received a fatal error. OpenSSL version 1.0.2b-1.0.2m are affected. Fixed in OpenSSL 1.0.2n. OpenSSL 1.1.0 is not affected.
CVE-2017-3733 2 Hp, Openssl 2 Operations Agent, Openssl 2025-04-20 5.0 MEDIUM 7.5 HIGH
During a renegotiation handshake if the Encrypt-Then-Mac extension is negotiated where it was not in the original handshake (or vice-versa) then this can cause OpenSSL 1.1.0 before 1.1.0e to crash (dependent on ciphersuite). Both clients and servers are affected.
CVE-2017-3736 1 Openssl 1 Openssl 2025-04-20 4.0 MEDIUM 6.5 MEDIUM
There is a carry propagating bug in the x86_64 Montgomery squaring procedure in OpenSSL before 1.0.2m and 1.1.0 before 1.1.0g. No EC algorithms are affected. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH are considered just feasible (although very difficult) because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be very significant and likely only accessible to a limited number of attackers. An attacker would additionally need online access to an unpatched system using the target private key in a scenario with persistent DH parameters and a private key that is shared between multiple clients. This only affects processors that support the BMI1, BMI2 and ADX extensions like Intel Broadwell (5th generation) and later or AMD Ryzen.
CVE-2017-3732 2 Nodejs, Openssl 2 Node.js, Openssl 2025-04-20 4.3 MEDIUM 5.9 MEDIUM
There is a carry propagating bug in the x86_64 Montgomery squaring procedure in OpenSSL 1.0.2 before 1.0.2k and 1.1.0 before 1.1.0d. No EC algorithms are affected. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH are considered just feasible (although very difficult) because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be very significant and likely only accessible to a limited number of attackers. An attacker would additionally need online access to an unpatched system using the target private key in a scenario with persistent DH parameters and a private key that is shared between multiple clients. For example this can occur by default in OpenSSL DHE based SSL/TLS ciphersuites. Note: This issue is very similar to CVE-2015-3193 but must be treated as a separate problem.
CVE-2016-2182 3 Hp, Openssl, Oracle 6 Icewall Federation Agent, Icewall Mcrp, Icewall Sso and 3 more 2025-04-12 7.5 HIGH 9.8 CRITICAL
The BN_bn2dec function in crypto/bn/bn_print.c in OpenSSL before 1.1.0 does not properly validate division results, which allows remote attackers to cause a denial of service (out-of-bounds write and application crash) or possibly have unspecified other impact via unknown vectors.
CVE-2015-0204 1 Openssl 1 Openssl 2025-04-12 4.3 MEDIUM N/A
The ssl3_get_key_exchange function in s3_clnt.c in OpenSSL before 0.9.8zd, 1.0.0 before 1.0.0p, and 1.0.1 before 1.0.1k allows remote SSL servers to conduct RSA-to-EXPORT_RSA downgrade attacks and facilitate brute-force decryption by offering a weak ephemeral RSA key in a noncompliant role, related to the "FREAK" issue. NOTE: the scope of this CVE is only client code based on OpenSSL, not EXPORT_RSA issues associated with servers or other TLS implementations.
CVE-2016-0701 1 Openssl 1 Openssl 2025-04-12 2.6 LOW 3.7 LOW
The DH_check_pub_key function in crypto/dh/dh_check.c in OpenSSL 1.0.2 before 1.0.2f does not ensure that prime numbers are appropriate for Diffie-Hellman (DH) key exchange, which makes it easier for remote attackers to discover a private DH exponent by making multiple handshakes with a peer that chose an inappropriate number, as demonstrated by a number in an X9.42 file.
CVE-2014-3511 1 Openssl 1 Openssl 2025-04-12 4.3 MEDIUM N/A
The ssl23_get_client_hello function in s23_srvr.c in OpenSSL 1.0.1 before 1.0.1i allows man-in-the-middle attackers to force the use of TLS 1.0 by triggering ClientHello message fragmentation in communication between a client and server that both support later TLS versions, related to a "protocol downgrade" issue.
CVE-2015-0285 1 Openssl 1 Openssl 2025-04-12 4.3 MEDIUM N/A
The ssl3_client_hello function in s3_clnt.c in OpenSSL 1.0.2 before 1.0.2a does not ensure that the PRNG is seeded before proceeding with a handshake, which makes it easier for remote attackers to defeat cryptographic protection mechanisms by sniffing the network and then conducting a brute-force attack.