Filtered by vendor Linux
Subscribe
Total
12249 CVE
| CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
|---|---|---|---|---|---|
| CVE-2025-39735 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 7.1 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: jfs: fix slab-out-of-bounds read in ea_get() During the "size_check" label in ea_get(), the code checks if the extended attribute list (xattr) size matches ea_size. If not, it logs "ea_get: invalid extended attribute" and calls print_hex_dump(). Here, EALIST_SIZE(ea_buf->xattr) returns 4110417968, which exceeds INT_MAX (2,147,483,647). Then ea_size is clamped: int size = clamp_t(int, ea_size, 0, EALIST_SIZE(ea_buf->xattr)); Although clamp_t aims to bound ea_size between 0 and 4110417968, the upper limit is treated as an int, causing an overflow above 2^31 - 1. This leads "size" to wrap around and become negative (-184549328). The "size" is then passed to print_hex_dump() (called "len" in print_hex_dump()), it is passed as type size_t (an unsigned type), this is then stored inside a variable called "int remaining", which is then assigned to "int linelen" which is then passed to hex_dump_to_buffer(). In print_hex_dump() the for loop, iterates through 0 to len-1, where len is 18446744073525002176, calling hex_dump_to_buffer() on each iteration: for (i = 0; i < len; i += rowsize) { linelen = min(remaining, rowsize); remaining -= rowsize; hex_dump_to_buffer(ptr + i, linelen, rowsize, groupsize, linebuf, sizeof(linebuf), ascii); ... } The expected stopping condition (i < len) is effectively broken since len is corrupted and very large. This eventually leads to the "ptr+i" being passed to hex_dump_to_buffer() to get closer to the end of the actual bounds of "ptr", eventually an out of bounds access is done in hex_dump_to_buffer() in the following for loop: for (j = 0; j < len; j++) { if (linebuflen < lx + 2) goto overflow2; ch = ptr[j]; ... } To fix this we should validate "EALIST_SIZE(ea_buf->xattr)" before it is utilised. | |||||
| CVE-2025-39728 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: clk: samsung: Fix UBSAN panic in samsung_clk_init() With UBSAN_ARRAY_BOUNDS=y, I'm hitting the below panic due to dereferencing `ctx->clk_data.hws` before setting `ctx->clk_data.num = nr_clks`. Move that up to fix the crash. UBSAN: array index out of bounds: 00000000f2005512 [#1] PREEMPT SMP <snip> Call trace: samsung_clk_init+0x110/0x124 (P) samsung_clk_init+0x48/0x124 (L) samsung_cmu_register_one+0x3c/0xa0 exynos_arm64_register_cmu+0x54/0x64 __gs101_cmu_top_of_clk_init_declare+0x28/0x60 ... | |||||
| CVE-2025-38152 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: remoteproc: core: Clear table_sz when rproc_shutdown There is case as below could trigger kernel dump: Use U-Boot to start remote processor(rproc) with resource table published to a fixed address by rproc. After Kernel boots up, stop the rproc, load a new firmware which doesn't have resource table ,and start rproc. When starting rproc with a firmware not have resource table, `memcpy(loaded_table, rproc->cached_table, rproc->table_sz)` will trigger dump, because rproc->cache_table is set to NULL during the last stop operation, but rproc->table_sz is still valid. This issue is found on i.MX8MP and i.MX9. Dump as below: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 Mem abort info: ESR = 0x0000000096000004 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault Data abort info: ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 CM = 0, WnR = 0, TnD = 0, TagAccess = 0 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 user pgtable: 4k pages, 48-bit VAs, pgdp=000000010af63000 [0000000000000000] pgd=0000000000000000, p4d=0000000000000000 Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP Modules linked in: CPU: 2 UID: 0 PID: 1060 Comm: sh Not tainted 6.14.0-rc7-next-20250317-dirty #38 Hardware name: NXP i.MX8MPlus EVK board (DT) pstate: a0000005 (NzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : __pi_memcpy_generic+0x110/0x22c lr : rproc_start+0x88/0x1e0 Call trace: __pi_memcpy_generic+0x110/0x22c (P) rproc_boot+0x198/0x57c state_store+0x40/0x104 dev_attr_store+0x18/0x2c sysfs_kf_write+0x7c/0x94 kernfs_fop_write_iter+0x120/0x1cc vfs_write+0x240/0x378 ksys_write+0x70/0x108 __arm64_sys_write+0x1c/0x28 invoke_syscall+0x48/0x10c el0_svc_common.constprop.0+0xc0/0xe0 do_el0_svc+0x1c/0x28 el0_svc+0x30/0xcc el0t_64_sync_handler+0x10c/0x138 el0t_64_sync+0x198/0x19c Clear rproc->table_sz to address the issue. | |||||
| CVE-2025-37838 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: HSI: ssi_protocol: Fix use after free vulnerability in ssi_protocol Driver Due to Race Condition In the ssi_protocol_probe() function, &ssi->work is bound with ssip_xmit_work(), In ssip_pn_setup(), the ssip_pn_xmit() function within the ssip_pn_ops structure is capable of starting the work. If we remove the module which will call ssi_protocol_remove() to make a cleanup, it will free ssi through kfree(ssi), while the work mentioned above will be used. The sequence of operations that may lead to a UAF bug is as follows: CPU0 CPU1 | ssip_xmit_work ssi_protocol_remove | kfree(ssi); | | struct hsi_client *cl = ssi->cl; | // use ssi Fix it by ensuring that the work is canceled before proceeding with the cleanup in ssi_protocol_remove(). | |||||
| CVE-2025-37805 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: sound/virtio: Fix cancel_sync warnings on uninitialized work_structs Betty reported hitting the following warning: [ 8.709131][ T221] WARNING: CPU: 2 PID: 221 at kernel/workqueue.c:4182 ... [ 8.713282][ T221] Call trace: [ 8.713365][ T221] __flush_work+0x8d0/0x914 [ 8.713468][ T221] __cancel_work_sync+0xac/0xfc [ 8.713570][ T221] cancel_work_sync+0x24/0x34 [ 8.713667][ T221] virtsnd_remove+0xa8/0xf8 [virtio_snd ab15f34d0dd772f6d11327e08a81d46dc9c36276] [ 8.713868][ T221] virtsnd_probe+0x48c/0x664 [virtio_snd ab15f34d0dd772f6d11327e08a81d46dc9c36276] [ 8.714035][ T221] virtio_dev_probe+0x28c/0x390 [ 8.714139][ T221] really_probe+0x1bc/0x4c8 ... It seems we're hitting the error path in virtsnd_probe(), which triggers a virtsnd_remove() which iterates over the substreams calling cancel_work_sync() on the elapsed_period work_struct. Looking at the code, from earlier in: virtsnd_probe()->virtsnd_build_devs()->virtsnd_pcm_parse_cfg() We set snd->nsubstreams, allocate the snd->substreams, and if we then hit an error on the info allocation or something in virtsnd_ctl_query_info() fails, we will exit without having initialized the elapsed_period work_struct. When that error path unwinds we then call virtsnd_remove() which as long as the substreams array is allocated, will iterate through calling cancel_work_sync() on the uninitialized work struct hitting this warning. Takashi Iwai suggested this fix, which initializes the substreams structure right after allocation, so that if we hit the error paths we avoid trying to cleanup uninitialized data. Note: I have not yet managed to reproduce the issue myself, so this patch has had limited testing. Feedback or thoughts would be appreciated! | |||||
| CVE-2025-37803 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: udmabuf: fix a buf size overflow issue during udmabuf creation by casting size_limit_mb to u64 when calculate pglimit. | |||||
| CVE-2025-37801 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: spi: spi-imx: Add check for spi_imx_setupxfer() Add check for the return value of spi_imx_setupxfer(). spi_imx->rx and spi_imx->tx function pointer can be NULL when spi_imx_setupxfer() return error, and make NULL pointer dereference. Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 Call trace: 0x0 spi_imx_pio_transfer+0x50/0xd8 spi_imx_transfer_one+0x18c/0x858 spi_transfer_one_message+0x43c/0x790 __spi_pump_transfer_message+0x238/0x5d4 __spi_sync+0x2b0/0x454 spi_write_then_read+0x11c/0x200 | |||||
| CVE-2025-37796 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: wifi: at76c50x: fix use after free access in at76_disconnect The memory pointed to by priv is freed at the end of at76_delete_device function (using ieee80211_free_hw). But the code then accesses the udev field of the freed object to put the USB device. This may also lead to a memory leak of the usb device. Fix this by using udev from interface. | |||||
| CVE-2025-37794 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: Purge vif txq in ieee80211_do_stop() After ieee80211_do_stop() SKB from vif's txq could still be processed. Indeed another concurrent vif schedule_and_wake_txq call could cause those packets to be dequeued (see ieee80211_handle_wake_tx_queue()) without checking the sdata current state. Because vif.drv_priv is now cleared in this function, this could lead to driver crash. For example in ath12k, ahvif is store in vif.drv_priv. Thus if ath12k_mac_op_tx() is called after ieee80211_do_stop(), ahvif->ah can be NULL, leading the ath12k_warn(ahvif->ah,...) call in this function to trigger the NULL deref below. Unable to handle kernel paging request at virtual address dfffffc000000001 KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f] batman_adv: bat0: Interface deactivated: brbh1337 Mem abort info: ESR = 0x0000000096000004 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault Data abort info: ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 CM = 0, WnR = 0, TnD = 0, TagAccess = 0 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [dfffffc000000001] address between user and kernel address ranges Internal error: Oops: 0000000096000004 [#1] SMP CPU: 1 UID: 0 PID: 978 Comm: lbd Not tainted 6.13.0-g633f875b8f1e #114 Hardware name: HW (DT) pstate: 10000005 (nzcV daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : ath12k_mac_op_tx+0x6cc/0x29b8 [ath12k] lr : ath12k_mac_op_tx+0x174/0x29b8 [ath12k] sp : ffffffc086ace450 x29: ffffffc086ace450 x28: 0000000000000000 x27: 1ffffff810d59ca4 x26: ffffff801d05f7c0 x25: 0000000000000000 x24: 000000004000001e x23: ffffff8009ce4926 x22: ffffff801f9c0800 x21: ffffff801d05f7f0 x20: ffffff8034a19f40 x19: 0000000000000000 x18: ffffff801f9c0958 x17: ffffff800bc0a504 x16: dfffffc000000000 x15: ffffffc086ace4f8 x14: ffffff801d05f83c x13: 0000000000000000 x12: ffffffb003a0bf03 x11: 0000000000000000 x10: ffffffb003a0bf02 x9 : ffffff8034a19f40 x8 : ffffff801d05f818 x7 : 1ffffff0069433dc x6 : ffffff8034a19ee0 x5 : ffffff801d05f7f0 x4 : 0000000000000000 x3 : 0000000000000001 x2 : 0000000000000000 x1 : dfffffc000000000 x0 : 0000000000000008 Call trace: ath12k_mac_op_tx+0x6cc/0x29b8 [ath12k] (P) ieee80211_handle_wake_tx_queue+0x16c/0x260 ieee80211_queue_skb+0xeec/0x1d20 ieee80211_tx+0x200/0x2c8 ieee80211_xmit+0x22c/0x338 __ieee80211_subif_start_xmit+0x7e8/0xc60 ieee80211_subif_start_xmit+0xc4/0xee0 __ieee80211_subif_start_xmit_8023.isra.0+0x854/0x17a0 ieee80211_subif_start_xmit_8023+0x124/0x488 dev_hard_start_xmit+0x160/0x5a8 __dev_queue_xmit+0x6f8/0x3120 br_dev_queue_push_xmit+0x120/0x4a8 __br_forward+0xe4/0x2b0 deliver_clone+0x5c/0xd0 br_flood+0x398/0x580 br_dev_xmit+0x454/0x9f8 dev_hard_start_xmit+0x160/0x5a8 __dev_queue_xmit+0x6f8/0x3120 ip6_finish_output2+0xc28/0x1b60 __ip6_finish_output+0x38c/0x638 ip6_output+0x1b4/0x338 ip6_local_out+0x7c/0xa8 ip6_send_skb+0x7c/0x1b0 ip6_push_pending_frames+0x94/0xd0 rawv6_sendmsg+0x1a98/0x2898 inet_sendmsg+0x94/0xe0 __sys_sendto+0x1e4/0x308 __arm64_sys_sendto+0xc4/0x140 do_el0_svc+0x110/0x280 el0_svc+0x20/0x60 el0t_64_sync_handler+0x104/0x138 el0t_64_sync+0x154/0x158 To avoid that, empty vif's txq at ieee80211_do_stop() so no packet could be dequeued after ieee80211_do_stop() (new packets cannot be queued because SDATA_STATE_RUNNING is cleared at this point). | |||||
| CVE-2025-37787 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: net: dsa: mv88e6xxx: avoid unregistering devlink regions which were never registered Russell King reports that a system with mv88e6xxx dereferences a NULL pointer when unbinding this driver: https://lore.kernel.org/netdev/Z_lRkMlTJ1KQ0kVX@shell.armlinux.org.uk/ The crash seems to be in devlink_region_destroy(), which is not NULL tolerant but is given a NULL devlink global region pointer. At least on some chips, some devlink regions are conditionally registered since the blamed commit, see mv88e6xxx_setup_devlink_regions_global(): if (cond && !cond(chip)) continue; These are MV88E6XXX_REGION_STU and MV88E6XXX_REGION_PVT. If the chip does not have an STU or PVT, it should crash like this. To fix the issue, avoid unregistering those regions which are NULL, i.e. were skipped at mv88e6xxx_setup_devlink_regions_global() time. | |||||
| CVE-2025-37785 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 7.1 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: ext4: fix OOB read when checking dotdot dir Mounting a corrupted filesystem with directory which contains '.' dir entry with rec_len == block size results in out-of-bounds read (later on, when the corrupted directory is removed). ext4_empty_dir() assumes every ext4 directory contains at least '.' and '..' as directory entries in the first data block. It first loads the '.' dir entry, performs sanity checks by calling ext4_check_dir_entry() and then uses its rec_len member to compute the location of '..' dir entry (in ext4_next_entry). It assumes the '..' dir entry fits into the same data block. If the rec_len of '.' is precisely one block (4KB), it slips through the sanity checks (it is considered the last directory entry in the data block) and leaves "struct ext4_dir_entry_2 *de" point exactly past the memory slot allocated to the data block. The following call to ext4_check_dir_entry() on new value of de then dereferences this pointer which results in out-of-bounds mem access. Fix this by extending __ext4_check_dir_entry() to check for '.' dir entries that reach the end of data block. Make sure to ignore the phony dir entries for checksum (by checking name_len for non-zero). Note: This is reported by KASAN as use-after-free in case another structure was recently freed from the slot past the bound, but it is really an OOB read. This issue was found by syzkaller tool. Call Trace: [ 38.594108] BUG: KASAN: slab-use-after-free in __ext4_check_dir_entry+0x67e/0x710 [ 38.594649] Read of size 2 at addr ffff88802b41a004 by task syz-executor/5375 [ 38.595158] [ 38.595288] CPU: 0 UID: 0 PID: 5375 Comm: syz-executor Not tainted 6.14.0-rc7 #1 [ 38.595298] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 [ 38.595304] Call Trace: [ 38.595308] <TASK> [ 38.595311] dump_stack_lvl+0xa7/0xd0 [ 38.595325] print_address_description.constprop.0+0x2c/0x3f0 [ 38.595339] ? __ext4_check_dir_entry+0x67e/0x710 [ 38.595349] print_report+0xaa/0x250 [ 38.595359] ? __ext4_check_dir_entry+0x67e/0x710 [ 38.595368] ? kasan_addr_to_slab+0x9/0x90 [ 38.595378] kasan_report+0xab/0xe0 [ 38.595389] ? __ext4_check_dir_entry+0x67e/0x710 [ 38.595400] __ext4_check_dir_entry+0x67e/0x710 [ 38.595410] ext4_empty_dir+0x465/0x990 [ 38.595421] ? __pfx_ext4_empty_dir+0x10/0x10 [ 38.595432] ext4_rmdir.part.0+0x29a/0xd10 [ 38.595441] ? __dquot_initialize+0x2a7/0xbf0 [ 38.595455] ? __pfx_ext4_rmdir.part.0+0x10/0x10 [ 38.595464] ? __pfx___dquot_initialize+0x10/0x10 [ 38.595478] ? down_write+0xdb/0x140 [ 38.595487] ? __pfx_down_write+0x10/0x10 [ 38.595497] ext4_rmdir+0xee/0x140 [ 38.595506] vfs_rmdir+0x209/0x670 [ 38.595517] ? lookup_one_qstr_excl+0x3b/0x190 [ 38.595529] do_rmdir+0x363/0x3c0 [ 38.595537] ? __pfx_do_rmdir+0x10/0x10 [ 38.595544] ? strncpy_from_user+0x1ff/0x2e0 [ 38.595561] __x64_sys_unlinkat+0xf0/0x130 [ 38.595570] do_syscall_64+0x5b/0x180 [ 38.595583] entry_SYSCALL_64_after_hwframe+0x76/0x7e | |||||
| CVE-2025-36047 | 4 Apple, Ibm, Linux and 1 more | 7 Macos, Aix, I and 4 more | 2025-11-03 | N/A | 5.3 MEDIUM |
| IBM WebSphere Application Server Liberty 18.0.0.2 through 25.0.0.8 is vulnerable to a denial of service, caused by sending a specially-crafted request. A remote attacker could exploit this vulnerability to cause the server to consume memory resources. | |||||
| CVE-2025-23136 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: thermal: int340x: Add NULL check for adev Not all devices have an ACPI companion fwnode, so adev might be NULL. This is similar to the commit cd2fd6eab480 ("platform/x86: int3472: Check for adev == NULL"). Add a check for adev not being set and return -ENODEV in that case to avoid a possible NULL pointer deref in int3402_thermal_probe(). Note, under the same directory, int3400_thermal_probe() has such a check. [ rjw: Subject edit, added Fixes: ] | |||||
| CVE-2025-22126 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: md: fix mddev uaf while iterating all_mddevs list While iterating all_mddevs list from md_notify_reboot() and md_exit(), list_for_each_entry_safe is used, and this can race with deletint the next mddev, causing UAF: t1: spin_lock //list_for_each_entry_safe(mddev, n, ...) mddev_get(mddev1) // assume mddev2 is the next entry spin_unlock t2: //remove mddev2 ... mddev_free spin_lock list_del spin_unlock kfree(mddev2) mddev_put(mddev1) spin_lock //continue dereference mddev2->all_mddevs The old helper for_each_mddev() actually grab the reference of mddev2 while holding the lock, to prevent from being freed. This problem can be fixed the same way, however, the code will be complex. Hence switch to use list_for_each_entry, in this case mddev_put() can free the mddev1 and it's not safe as well. Refer to md_seq_show(), also factor out a helper mddev_put_locked() to fix this problem. | |||||
| CVE-2025-22097 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: drm/vkms: Fix use after free and double free on init error If the driver initialization fails, the vkms_exit() function might access an uninitialized or freed default_config pointer and it might double free it. Fix both possible errors by initializing default_config only when the driver initialization succeeded. | |||||
| CVE-2025-22095 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: PCI: brcmstb: Fix error path after a call to regulator_bulk_get() If the regulator_bulk_get() returns an error and no regulators are created, we need to set their number to zero. If we don't do this and the PCIe link up fails, a call to the regulator_bulk_free() will result in a kernel panic. While at it, print the error value, as we cannot return an error upwards as the kernel will WARN() on an error from add_bus(). [kwilczynski: commit log, use comma in the message to match style with other similar messages] | |||||
| CVE-2025-22093 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: avoid NPD when ASIC does not support DMUB ctx->dmub_srv will de NULL if the ASIC does not support DMUB, which is tested in dm_dmub_sw_init. However, it will be dereferenced in dmub_hw_lock_mgr_cmd if should_use_dmub_lock returns true. This has been the case since dmub support has been added for PSR1. Fix this by checking for dmub_srv in should_use_dmub_lock. [ 37.440832] BUG: kernel NULL pointer dereference, address: 0000000000000058 [ 37.447808] #PF: supervisor read access in kernel mode [ 37.452959] #PF: error_code(0x0000) - not-present page [ 37.458112] PGD 0 P4D 0 [ 37.460662] Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI [ 37.465553] CPU: 2 UID: 1000 PID: 1745 Comm: DrmThread Not tainted 6.14.0-rc1-00003-gd62e938120f0 #23 99720e1cb1e0fc4773b8513150932a07de3c6e88 [ 37.478324] Hardware name: Google Morphius/Morphius, BIOS Google_Morphius.13434.858.0 10/26/2023 [ 37.487103] RIP: 0010:dmub_hw_lock_mgr_cmd+0x77/0xb0 [ 37.492074] Code: 44 24 0e 00 00 00 00 48 c7 04 24 45 00 00 0c 40 88 74 24 0d 0f b6 02 88 44 24 0c 8b 01 89 44 24 08 85 f6 75 05 c6 44 24 0e 01 <48> 8b 7f 58 48 89 e6 ba 01 00 00 00 e8 08 3c 2a 00 65 48 8b 04 5 [ 37.510822] RSP: 0018:ffff969442853300 EFLAGS: 00010202 [ 37.516052] RAX: 0000000000000000 RBX: ffff92db03000000 RCX: ffff969442853358 [ 37.523185] RDX: ffff969442853368 RSI: 0000000000000001 RDI: 0000000000000000 [ 37.530322] RBP: 0000000000000001 R08: 00000000000004a7 R09: 00000000000004a5 [ 37.537453] R10: 0000000000000476 R11: 0000000000000062 R12: ffff92db0ade8000 [ 37.544589] R13: ffff92da01180ae0 R14: ffff92da011802a8 R15: ffff92db03000000 [ 37.551725] FS: 0000784a9cdfc6c0(0000) GS:ffff92db2af00000(0000) knlGS:0000000000000000 [ 37.559814] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 37.565562] CR2: 0000000000000058 CR3: 0000000112b1c000 CR4: 00000000003506f0 [ 37.572697] Call Trace: [ 37.575152] <TASK> [ 37.577258] ? __die_body+0x66/0xb0 [ 37.580756] ? page_fault_oops+0x3e7/0x4a0 [ 37.584861] ? exc_page_fault+0x3e/0xe0 [ 37.588706] ? exc_page_fault+0x5c/0xe0 [ 37.592550] ? asm_exc_page_fault+0x22/0x30 [ 37.596742] ? dmub_hw_lock_mgr_cmd+0x77/0xb0 [ 37.601107] dcn10_cursor_lock+0x1e1/0x240 [ 37.605211] program_cursor_attributes+0x81/0x190 [ 37.609923] commit_planes_for_stream+0x998/0x1ef0 [ 37.614722] update_planes_and_stream_v2+0x41e/0x5c0 [ 37.619703] dc_update_planes_and_stream+0x78/0x140 [ 37.624588] amdgpu_dm_atomic_commit_tail+0x4362/0x49f0 [ 37.629832] ? srso_return_thunk+0x5/0x5f [ 37.633847] ? mark_held_locks+0x6d/0xd0 [ 37.637774] ? _raw_spin_unlock_irq+0x24/0x50 [ 37.642135] ? srso_return_thunk+0x5/0x5f [ 37.646148] ? lockdep_hardirqs_on+0x95/0x150 [ 37.650510] ? srso_return_thunk+0x5/0x5f [ 37.654522] ? _raw_spin_unlock_irq+0x2f/0x50 [ 37.658883] ? srso_return_thunk+0x5/0x5f [ 37.662897] ? wait_for_common+0x186/0x1c0 [ 37.666998] ? srso_return_thunk+0x5/0x5f [ 37.671009] ? drm_crtc_next_vblank_start+0xc3/0x170 [ 37.675983] commit_tail+0xf5/0x1c0 [ 37.679478] drm_atomic_helper_commit+0x2a2/0x2b0 [ 37.684186] drm_atomic_commit+0xd6/0x100 [ 37.688199] ? __cfi___drm_printfn_info+0x10/0x10 [ 37.692911] drm_atomic_helper_update_plane+0xe5/0x130 [ 37.698054] drm_mode_cursor_common+0x501/0x670 [ 37.702600] ? __cfi_drm_mode_cursor_ioctl+0x10/0x10 [ 37.707572] drm_mode_cursor_ioctl+0x48/0x70 [ 37.711851] drm_ioctl_kernel+0xf2/0x150 [ 37.715781] drm_ioctl+0x363/0x590 [ 37.719189] ? __cfi_drm_mode_cursor_ioctl+0x10/0x10 [ 37.724165] amdgpu_drm_ioctl+0x41/0x80 [ 37.728013] __se_sys_ioctl+0x7f/0xd0 [ 37.731685] do_syscall_64+0x87/0x100 [ 37.735355] ? vma_end_read+0x12/0xe0 [ 37.739024] ? srso_return_thunk+0x5/0x5f [ 37.743041] ? find_held_lock+0x47/0xf0 [ 37.746884] ? vma_end_read+0x12/0xe0 [ 37.750552] ? srso_return_thunk+0x5/0 ---truncated--- | |||||
| CVE-2025-22089 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: RDMA/core: Don't expose hw_counters outside of init net namespace Commit 467f432a521a ("RDMA/core: Split port and device counter sysfs attributes") accidentally almost exposed hw counters to non-init net namespaces. It didn't expose them fully, as an attempt to read any of those counters leads to a crash like this one: [42021.807566] BUG: kernel NULL pointer dereference, address: 0000000000000028 [42021.814463] #PF: supervisor read access in kernel mode [42021.819549] #PF: error_code(0x0000) - not-present page [42021.824636] PGD 0 P4D 0 [42021.827145] Oops: 0000 [#1] SMP PTI [42021.830598] CPU: 82 PID: 2843922 Comm: switchto-defaul Kdump: loaded Tainted: G S W I XXX [42021.841697] Hardware name: XXX [42021.849619] RIP: 0010:hw_stat_device_show+0x1e/0x40 [ib_core] [42021.855362] Code: 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 0f 1f 44 00 00 49 89 d0 4c 8b 5e 20 48 8b 8f b8 04 00 00 48 81 c7 f0 fa ff ff <48> 8b 41 28 48 29 ce 48 83 c6 d0 48 c1 ee 04 69 d6 ab aa aa aa 48 [42021.873931] RSP: 0018:ffff97fe90f03da0 EFLAGS: 00010287 [42021.879108] RAX: ffff9406988a8c60 RBX: ffff940e1072d438 RCX: 0000000000000000 [42021.886169] RDX: ffff94085f1aa000 RSI: ffff93c6cbbdbcb0 RDI: ffff940c7517aef0 [42021.893230] RBP: ffff97fe90f03e70 R08: ffff94085f1aa000 R09: 0000000000000000 [42021.900294] R10: ffff94085f1aa000 R11: ffffffffc0775680 R12: ffffffff87ca2530 [42021.907355] R13: ffff940651602840 R14: ffff93c6cbbdbcb0 R15: ffff94085f1aa000 [42021.914418] FS: 00007fda1a3b9700(0000) GS:ffff94453fb80000(0000) knlGS:0000000000000000 [42021.922423] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [42021.928130] CR2: 0000000000000028 CR3: 00000042dcfb8003 CR4: 00000000003726f0 [42021.935194] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [42021.942257] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [42021.949324] Call Trace: [42021.951756] <TASK> [42021.953842] [<ffffffff86c58674>] ? show_regs+0x64/0x70 [42021.959030] [<ffffffff86c58468>] ? __die+0x78/0xc0 [42021.963874] [<ffffffff86c9ef75>] ? page_fault_oops+0x2b5/0x3b0 [42021.969749] [<ffffffff87674b92>] ? exc_page_fault+0x1a2/0x3c0 [42021.975549] [<ffffffff87801326>] ? asm_exc_page_fault+0x26/0x30 [42021.981517] [<ffffffffc0775680>] ? __pfx_show_hw_stats+0x10/0x10 [ib_core] [42021.988482] [<ffffffffc077564e>] ? hw_stat_device_show+0x1e/0x40 [ib_core] [42021.995438] [<ffffffff86ac7f8e>] dev_attr_show+0x1e/0x50 [42022.000803] [<ffffffff86a3eeb1>] sysfs_kf_seq_show+0x81/0xe0 [42022.006508] [<ffffffff86a11134>] seq_read_iter+0xf4/0x410 [42022.011954] [<ffffffff869f4b2e>] vfs_read+0x16e/0x2f0 [42022.017058] [<ffffffff869f50ee>] ksys_read+0x6e/0xe0 [42022.022073] [<ffffffff8766f1ca>] do_syscall_64+0x6a/0xa0 [42022.027441] [<ffffffff8780013b>] entry_SYSCALL_64_after_hwframe+0x78/0xe2 The problem can be reproduced using the following steps: ip netns add foo ip netns exec foo bash cat /sys/class/infiniband/mlx4_0/hw_counters/* The panic occurs because of casting the device pointer into an ib_device pointer using container_of() in hw_stat_device_show() is wrong and leads to a memory corruption. However the real problem is that hw counters should never been exposed outside of the non-init net namespace. Fix this by saving the index of the corresponding attribute group (it might be 1 or 2 depending on the presence of driver-specific attributes) and zeroing the pointer to hw_counters group for compat devices during the initialization. With this fix applied hw_counters are not available in a non-init net namespace: find /sys/class/infiniband/mlx4_0/ -name hw_counters /sys/class/infiniband/mlx4_0/ports/1/hw_counters /sys/class/infiniband/mlx4_0/ports/2/hw_counters /sys/class/infiniband/mlx4_0/hw_counters ip netns add foo ip netns exec foo bash find /sys/class/infiniband/mlx4_0/ -name hw_counters | |||||
| CVE-2025-22088 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: RDMA/erdma: Prevent use-after-free in erdma_accept_newconn() After the erdma_cep_put(new_cep) being called, new_cep will be freed, and the following dereference will cause a UAF problem. Fix this issue. | |||||
| CVE-2025-22086 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: RDMA/mlx5: Fix mlx5_poll_one() cur_qp update flow When cur_qp isn't NULL, in order to avoid fetching the QP from the radix tree again we check if the next cqe QP is identical to the one we already have. The bug however is that we are checking if the QP is identical by checking the QP number inside the CQE against the QP number inside the mlx5_ib_qp, but that's wrong since the QP number from the CQE is from FW so it should be matched against mlx5_core_qp which is our FW QP number. Otherwise we could use the wrong QP when handling a CQE which could cause the kernel trace below. This issue is mainly noticeable over QPs 0 & 1, since for now they are the only QPs in our driver whereas the QP number inside mlx5_ib_qp doesn't match the QP number inside mlx5_core_qp. BUG: kernel NULL pointer dereference, address: 0000000000000012 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: Oops: 0000 [#1] SMP CPU: 0 UID: 0 PID: 7927 Comm: kworker/u62:1 Not tainted 6.14.0-rc3+ #189 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 Workqueue: ib-comp-unb-wq ib_cq_poll_work [ib_core] RIP: 0010:mlx5_ib_poll_cq+0x4c7/0xd90 [mlx5_ib] Code: 03 00 00 8d 58 ff 21 cb 66 39 d3 74 39 48 c7 c7 3c 89 6e a0 0f b7 db e8 b7 d2 b3 e0 49 8b 86 60 03 00 00 48 c7 c7 4a 89 6e a0 <0f> b7 5c 98 02 e8 9f d2 b3 e0 41 0f b7 86 78 03 00 00 83 e8 01 21 RSP: 0018:ffff88810511bd60 EFLAGS: 00010046 RAX: 0000000000000010 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffff88885fa1b3c0 RDI: ffffffffa06e894a RBP: 00000000000000b0 R08: 0000000000000000 R09: ffff88810511bc10 R10: 0000000000000001 R11: 0000000000000001 R12: ffff88810d593000 R13: ffff88810e579108 R14: ffff888105146000 R15: 00000000000000b0 FS: 0000000000000000(0000) GS:ffff88885fa00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000012 CR3: 00000001077e6001 CR4: 0000000000370eb0 Call Trace: <TASK> ? __die+0x20/0x60 ? page_fault_oops+0x150/0x3e0 ? exc_page_fault+0x74/0x130 ? asm_exc_page_fault+0x22/0x30 ? mlx5_ib_poll_cq+0x4c7/0xd90 [mlx5_ib] __ib_process_cq+0x5a/0x150 [ib_core] ib_cq_poll_work+0x31/0x90 [ib_core] process_one_work+0x169/0x320 worker_thread+0x288/0x3a0 ? work_busy+0xb0/0xb0 kthread+0xd7/0x1f0 ? kthreads_online_cpu+0x130/0x130 ? kthreads_online_cpu+0x130/0x130 ret_from_fork+0x2d/0x50 ? kthreads_online_cpu+0x130/0x130 ret_from_fork_asm+0x11/0x20 </TASK> | |||||
