Total
307012 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2025-38620 | 2025-08-22 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: zloop: fix KASAN use-after-free of tag set When a zoned loop device, or zloop device, is removed, KASAN enabled kernel reports "BUG KASAN use-after-free" in blk_mq_free_tag_set(). The BUG happens because zloop_ctl_remove() calls put_disk(), which invokes zloop_free_disk(). The zloop_free_disk() frees the memory allocated for the zlo pointer. However, after the memory is freed, zloop_ctl_remove() calls blk_mq_free_tag_set(&zlo->tag_set), which accesses the freed zlo. Hence the KASAN use-after-free. zloop_ctl_remove() put_disk(zlo->disk) put_device() kobject_put() ... zloop_free_disk() kvfree(zlo) blk_mq_free_tag_set(&zlo->tag_set) To avoid the BUG, move the call to blk_mq_free_tag_set(&zlo->tag_set) from zloop_ctl_remove() into zloop_free_disk(). This ensures that the tag_set is freed before the call to kvfree(zlo). | |||||
CVE-2025-38670 | 2025-08-22 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: arm64/entry: Mask DAIF in cpu_switch_to(), call_on_irq_stack() `cpu_switch_to()` and `call_on_irq_stack()` manipulate SP to change to different stacks along with the Shadow Call Stack if it is enabled. Those two stack changes cannot be done atomically and both functions can be interrupted by SErrors or Debug Exceptions which, though unlikely, is very much broken : if interrupted, we can end up with mismatched stacks and Shadow Call Stack leading to clobbered stacks. In `cpu_switch_to()`, it can happen when SP_EL0 points to the new task, but x18 stills points to the old task's SCS. When the interrupt handler tries to save the task's SCS pointer, it will save the old task SCS pointer (x18) into the new task struct (pointed to by SP_EL0), clobbering it. In `call_on_irq_stack()`, it can happen when switching from the task stack to the IRQ stack and when switching back. In both cases, we can be interrupted when the SCS pointer points to the IRQ SCS, but SP points to the task stack. The nested interrupt handler pushes its return addresses on the IRQ SCS. It then detects that SP points to the task stack, calls `call_on_irq_stack()` and clobbers the task SCS pointer with the IRQ SCS pointer, which it will also use ! This leads to tasks returning to addresses on the wrong SCS, or even on the IRQ SCS, triggering kernel panics via CONFIG_VMAP_STACK or FPAC if enabled. This is possible on a default config, but unlikely. However, when enabling CONFIG_ARM64_PSEUDO_NMI, DAIF is unmasked and instead the GIC is responsible for filtering what interrupts the CPU should receive based on priority. Given the goal of emulating NMIs, pseudo-NMIs can be received by the CPU even in `cpu_switch_to()` and `call_on_irq_stack()`, possibly *very* frequently depending on the system configuration and workload, leading to unpredictable kernel panics. Completely mask DAIF in `cpu_switch_to()` and restore it when returning. Do the same in `call_on_irq_stack()`, but restore and mask around the branch. Mask DAIF even if CONFIG_SHADOW_CALL_STACK is not enabled for consistency of behaviour between all configurations. Introduce and use an assembly macro for saving and masking DAIF, as the existing one saves but only masks IF. | |||||
CVE-2025-41451 | 2025-08-22 | N/A | N/A | ||
Improper neutralization of alarm-to-mail configuration fields used in an OS shell Command ('Command Injection') in Danfoss AK-SM8xxA Series prior to version 4.3.1, leading to a potential post-authenticated remote code execution on an attacked system. | |||||
CVE-2010-20122 | 2025-08-22 | N/A | N/A | ||
Xftp FTP Client version up to and including 3.0 (build 0238) contain a stack-based buffer overflow vulnerability triggered by a maliciously crafted PWD response from an FTP server. When the client connects to a server and receives an overly long directory string in response to the PWD command, the client fails to properly validate the length of the input before copying it into a fixed-size buffer. This results in memory corruption and allows remote attackers to execute arbitrary code on the client system. | |||||
CVE-2009-10006 | 2025-08-22 | N/A | N/A | ||
UFO: Alien Invasion versions up to and including 2.2.1 contain a buffer overflow vulnerability in its built-in IRC client component. When the client connects to an IRC server and receives a crafted numeric reply (specifically a 001 message), the application fails to properly validate the length of the response string. This results in a stack-based buffer overflow, which may corrupt control flow structures and allow arbitrary code execution. The vulnerability is triggered during automatic IRC connection handling and does not require user interaction beyond launching the game. | |||||
CVE-2025-38617 | 2025-08-22 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: net/packet: fix a race in packet_set_ring() and packet_notifier() When packet_set_ring() releases po->bind_lock, another thread can run packet_notifier() and process an NETDEV_UP event. This race and the fix are both similar to that of commit 15fe076edea7 ("net/packet: fix a race in packet_bind() and packet_notifier()"). There too the packet_notifier NETDEV_UP event managed to run while a po->bind_lock critical section had to be temporarily released. And the fix was similarly to temporarily set po->num to zero to keep the socket unhooked until the lock is retaken. The po->bind_lock in packet_set_ring and packet_notifier precede the introduction of git history. | |||||
CVE-2025-55522 | 2025-08-22 | N/A | 6.5 MEDIUM | ||
Cross-site scripting (XSS) vulnerability in the component /common/reports of Akaunting v3.1.18 allows attackers to execute arbitrary web scripts or HTML via injecting a crafted payload into the name parameter. | |||||
CVE-2025-24489 | 2025-08-22 | N/A | 6.3 MEDIUM | ||
An attacker could exploit this vulnerability by uploading arbitrary files via a specific service, which could lead to system compromise. | |||||
CVE-2025-53763 | 2025-08-22 | N/A | 9.8 CRITICAL | ||
Improper access control in Azure Databricks allows an unauthorized attacker to elevate privileges over a network. | |||||
CVE-2025-38616 | 2025-08-22 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: tls: handle data disappearing from under the TLS ULP TLS expects that it owns the receive queue of the TCP socket. This cannot be guaranteed in case the reader of the TCP socket entered before the TLS ULP was installed, or uses some non-standard read API (eg. zerocopy ones). Replace the WARN_ON() and a buggy early exit (which leaves anchor pointing to a freed skb) with real error handling. Wipe the parsing state and tell the reader to retry. We already reload the anchor every time we (re)acquire the socket lock, so the only condition we need to avoid is an out of bounds read (not having enough bytes in the socket for previously parsed record len). If some data was read from under TLS but there's enough in the queue we'll reload and decrypt what is most likely not a valid TLS record. Leading to some undefined behavior from TLS perspective (corrupting a stream? missing an alert? missing an attack?) but no kernel crash should take place. | |||||
CVE-2025-55106 | 2025-08-22 | N/A | 4.8 MEDIUM | ||
There is a stored Cross-site Scripting vulnerability in Esri Portal for ArcGIS Enterprise Sites versions 10.9.1 – 11.4 that may allow a remote, authenticated attacker to inject malicious a file with an embedded xss script which when loaded could potentially execute arbitrary JavaScript code in the victim’s browser. The privileges required to execute this attack are high. The attack could disclose a privileged token which may result in the attacker gaining full control of the Portal. | |||||
CVE-2025-6465 | 2025-08-22 | N/A | 4.3 MEDIUM | ||
Mattermost versions 10.8.x <= 10.8.3, 10.5.x <= 10.5.8, 10.10.x <= 10.10.0, 10.9.x <= 10.9.3 fail to sanitize file names which allows users with file upload permission to overwrite file attachment thumbnails via path traversal in file streaming APIs. | |||||
CVE-2025-38624 | 2025-08-22 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: PCI: pnv_php: Clean up allocated IRQs on unplug When the root of a nested PCIe bridge configuration is unplugged, the pnv_php driver leaked the allocated IRQ resources for the child bridges' hotplug event notifications, resulting in a panic. Fix this by walking all child buses and deallocating all its IRQ resources before calling pci_hp_remove_devices(). Also modify the lifetime of the workqueue at struct pnv_php_slot::wq so that it is only destroyed in pnv_php_free_slot(), instead of pnv_php_disable_irq(). This is required since pnv_php_disable_irq() will now be called by workers triggered by hot unplug interrupts, so the workqueue needs to stay allocated. The abridged kernel panic that occurs without this patch is as follows: WARNING: CPU: 0 PID: 687 at kernel/irq/msi.c:292 msi_device_data_release+0x6c/0x9c CPU: 0 UID: 0 PID: 687 Comm: bash Not tainted 6.14.0-rc5+ #2 Call Trace: msi_device_data_release+0x34/0x9c (unreliable) release_nodes+0x64/0x13c devres_release_all+0xc0/0x140 device_del+0x2d4/0x46c pci_destroy_dev+0x5c/0x194 pci_hp_remove_devices+0x90/0x128 pci_hp_remove_devices+0x44/0x128 pnv_php_disable_slot+0x54/0xd4 power_write_file+0xf8/0x18c pci_slot_attr_store+0x40/0x5c sysfs_kf_write+0x64/0x78 kernfs_fop_write_iter+0x1b0/0x290 vfs_write+0x3bc/0x50c ksys_write+0x84/0x140 system_call_exception+0x124/0x230 system_call_vectored_common+0x15c/0x2ec [bhelgaas: tidy comments] | |||||
CVE-2025-55745 | 2025-08-22 | N/A | N/A | ||
UnoPim is an open-source Product Information Management (PIM) system built on the Laravel framework. Versions 0.3.0 and prior are vulnerable to CSV injection, also known as formula injection, in the Quick Export feature. This vulnerability allows attackers to inject malicious content into exported CSV files. When the CSV file is opened in spreadsheet applications such as Microsoft Excel, the malicious input may be interpreted as a formula or command, potentially resulting in the execution of arbitrary code on the victim's device. Successful exploitation can lead to remote code execution, including the establishment of a reverse shell. Users are advised to upgrade to version 0.3.1 or later. | |||||
CVE-2025-38643 | 2025-08-22 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: wifi: cfg80211: Add missing lock in cfg80211_check_and_end_cac() Callers of wdev_chandef() must hold the wiphy mutex. But the worker cfg80211_propagate_cac_done_wk() never takes the lock. Which triggers the warning below with the mesh_peer_connected_dfs test from hostapd and not (yet) released mac80211 code changes: WARNING: CPU: 0 PID: 495 at net/wireless/chan.c:1552 wdev_chandef+0x60/0x165 Modules linked in: CPU: 0 UID: 0 PID: 495 Comm: kworker/u4:2 Not tainted 6.14.0-rc5-wt-g03960e6f9d47 #33 13c287eeabfe1efea01c0bcc863723ab082e17cf Workqueue: cfg80211 cfg80211_propagate_cac_done_wk Stack: 00000000 00000001 ffffff00 6093267c 00000000 6002ec30 6d577c50 60037608 00000000 67e8d108 6063717b 00000000 Call Trace: [<6002ec30>] ? _printk+0x0/0x98 [<6003c2b3>] show_stack+0x10e/0x11a [<6002ec30>] ? _printk+0x0/0x98 [<60037608>] dump_stack_lvl+0x71/0xb8 [<6063717b>] ? wdev_chandef+0x60/0x165 [<6003766d>] dump_stack+0x1e/0x20 [<6005d1b7>] __warn+0x101/0x20f [<6005d3a8>] warn_slowpath_fmt+0xe3/0x15d [<600b0c5c>] ? mark_lock.part.0+0x0/0x4ec [<60751191>] ? __this_cpu_preempt_check+0x0/0x16 [<600b11a2>] ? mark_held_locks+0x5a/0x6e [<6005d2c5>] ? warn_slowpath_fmt+0x0/0x15d [<60052e53>] ? unblock_signals+0x3a/0xe7 [<60052f2d>] ? um_set_signals+0x2d/0x43 [<60751191>] ? __this_cpu_preempt_check+0x0/0x16 [<607508b2>] ? lock_is_held_type+0x207/0x21f [<6063717b>] wdev_chandef+0x60/0x165 [<605f89b4>] regulatory_propagate_dfs_state+0x247/0x43f [<60052f00>] ? um_set_signals+0x0/0x43 [<605e6bfd>] cfg80211_propagate_cac_done_wk+0x3a/0x4a [<6007e460>] process_scheduled_works+0x3bc/0x60e [<6007d0ec>] ? move_linked_works+0x4d/0x81 [<6007d120>] ? assign_work+0x0/0xaa [<6007f81f>] worker_thread+0x220/0x2dc [<600786ef>] ? set_pf_worker+0x0/0x57 [<60087c96>] ? to_kthread+0x0/0x43 [<6008ab3c>] kthread+0x2d3/0x2e2 [<6007f5ff>] ? worker_thread+0x0/0x2dc [<6006c05b>] ? calculate_sigpending+0x0/0x56 [<6003b37d>] new_thread_handler+0x4a/0x64 irq event stamp: 614611 hardirqs last enabled at (614621): [<00000000600bc96b>] __up_console_sem+0x82/0xaf hardirqs last disabled at (614630): [<00000000600bc92c>] __up_console_sem+0x43/0xaf softirqs last enabled at (614268): [<00000000606c55c6>] __ieee80211_wake_queue+0x933/0x985 softirqs last disabled at (614266): [<00000000606c52d6>] __ieee80211_wake_queue+0x643/0x985 | |||||
CVE-2025-9341 | 2025-08-22 | N/A | N/A | ||
Uncontrolled Resource Consumption vulnerability in Legion of the Bouncy Castle Inc. Bouncy Castle for Java FIPS bc-fips on All (API modules) allows Excessive Allocation. This vulnerability is associated with program files org/bouncycastle/crypto/fips/AESNativeCBC.Java. This issue affects Bouncy Castle for Java FIPS: from BC-FJA 2.1.0 through 2.1.0. | |||||
CVE-2025-38639 | 2025-08-22 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: netfilter: xt_nfacct: don't assume acct name is null-terminated BUG: KASAN: slab-out-of-bounds in .. lib/vsprintf.c:721 Read of size 1 at addr ffff88801eac95c8 by task syz-executor183/5851 [..] string+0x231/0x2b0 lib/vsprintf.c:721 vsnprintf+0x739/0xf00 lib/vsprintf.c:2874 [..] nfacct_mt_checkentry+0xd2/0xe0 net/netfilter/xt_nfacct.c:41 xt_check_match+0x3d1/0xab0 net/netfilter/x_tables.c:523 nfnl_acct_find_get() handles non-null input, but the error printk relied on its presence. | |||||
CVE-2025-53795 | 2025-08-22 | N/A | 9.1 CRITICAL | ||
Improper authorization in Microsoft PC Manager allows an unauthorized attacker to elevate privileges over a network. | |||||
CVE-2025-43754 | 2025-08-22 | N/A | N/A | ||
Username enumeration vulnerability in Liferay Portal 7.4.0 through 7.4.3.132, and Liferay DXP 2024.Q4.0 through 2024.Q4.7, 2024.Q3.0 through 2024.Q3.13, 2024.Q2.0 through 2024.Q2.13, 2024.Q1.1 through 2024.Q1.14 and 7.4 GA through update 92 allows attackers to determine if an account exist in the application by inspecting the server processing time of the login request. | |||||
CVE-2025-38619 | 2025-08-22 | N/A | N/A | ||
In the Linux kernel, the following vulnerability has been resolved: media: ti: j721e-csi2rx: fix list_del corruption If ti_csi2rx_start_dma() fails in ti_csi2rx_dma_callback(), the buffer is marked done with VB2_BUF_STATE_ERROR but is not removed from the DMA queue. This causes the same buffer to be retried in the next iteration, resulting in a double list_del() and eventual list corruption. Fix this by removing the buffer from the queue before calling vb2_buffer_done() on error. This resolves a crash due to list_del corruption: [ 37.811243] j721e-csi2rx 30102000.ticsi2rx: Failed to queue the next buffer for DMA [ 37.832187] slab kmalloc-2k start ffff00000255b000 pointer offset 1064 size 2048 [ 37.839761] list_del corruption. next->prev should be ffff00000255bc28, but was ffff00000255d428. (next=ffff00000255b428) [ 37.850799] ------------[ cut here ]------------ [ 37.855424] kernel BUG at lib/list_debug.c:65! [ 37.859876] Internal error: Oops - BUG: 00000000f2000800 [#1] SMP [ 37.866061] Modules linked in: i2c_dev usb_f_rndis u_ether libcomposite dwc3 udc_core usb_common aes_ce_blk aes_ce_cipher ghash_ce gf128mul sha1_ce cpufreq_dt dwc3_am62 phy_gmii_sel sa2ul [ 37.882830] CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.16.0-rc3+ #28 VOLUNTARY [ 37.890851] Hardware name: Bosch STLA-GSRV2-B0 (DT) [ 37.895737] pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 37.902703] pc : __list_del_entry_valid_or_report+0xdc/0x114 [ 37.908390] lr : __list_del_entry_valid_or_report+0xdc/0x114 [ 37.914059] sp : ffff800080003db0 [ 37.917375] x29: ffff800080003db0 x28: 0000000000000007 x27: ffff800080e50000 [ 37.924521] x26: 0000000000000000 x25: ffff0000016abb50 x24: dead000000000122 [ 37.931666] x23: ffff0000016abb78 x22: ffff0000016ab080 x21: ffff800080003de0 [ 37.938810] x20: ffff00000255bc00 x19: ffff00000255b800 x18: 000000000000000a [ 37.945956] x17: 20747562202c3832 x16: 6362353532303030 x15: 0720072007200720 [ 37.953101] x14: 0720072007200720 x13: 0720072007200720 x12: 00000000ffffffea [ 37.960248] x11: ffff800080003b18 x10: 00000000ffffefff x9 : ffff800080f5b568 [ 37.967396] x8 : ffff800080f5b5c0 x7 : 0000000000017fe8 x6 : c0000000ffffefff [ 37.974542] x5 : ffff00000fea6688 x4 : 0000000000000000 x3 : 0000000000000000 [ 37.981686] x2 : 0000000000000000 x1 : ffff800080ef2b40 x0 : 000000000000006d [ 37.988832] Call trace: [ 37.991281] __list_del_entry_valid_or_report+0xdc/0x114 (P) [ 37.996959] ti_csi2rx_dma_callback+0x84/0x1c4 [ 38.001419] udma_vchan_complete+0x1e0/0x344 [ 38.005705] tasklet_action_common+0x118/0x310 [ 38.010163] tasklet_action+0x30/0x3c [ 38.013832] handle_softirqs+0x10c/0x2e0 [ 38.017761] __do_softirq+0x14/0x20 [ 38.021256] ____do_softirq+0x10/0x20 [ 38.024931] call_on_irq_stack+0x24/0x60 [ 38.028873] do_softirq_own_stack+0x1c/0x40 [ 38.033064] __irq_exit_rcu+0x130/0x15c [ 38.036909] irq_exit_rcu+0x10/0x20 [ 38.040403] el1_interrupt+0x38/0x60 [ 38.043987] el1h_64_irq_handler+0x18/0x24 [ 38.048091] el1h_64_irq+0x6c/0x70 [ 38.051501] default_idle_call+0x34/0xe0 (P) [ 38.055783] do_idle+0x1f8/0x250 [ 38.059021] cpu_startup_entry+0x34/0x3c [ 38.062951] rest_init+0xb4/0xc0 [ 38.066186] console_on_rootfs+0x0/0x6c [ 38.070031] __primary_switched+0x88/0x90 [ 38.074059] Code: b00037e0 91378000 f9400462 97e9bf49 (d4210000) [ 38.080168] ---[ end trace 0000000000000000 ]--- [ 38.084795] Kernel panic - not syncing: Oops - BUG: Fatal exception in interrupt [ 38.092197] SMP: stopping secondary CPUs [ 38.096139] Kernel Offset: disabled [ 38.099631] CPU features: 0x0000,00002000,02000801,0400420b [ 38.105202] Memory Limit: none [ 38.108260] ---[ end Kernel panic - not syncing: Oops - BUG: Fatal exception in interrupt ]--- |