Total
12209 CVE
| CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
|---|---|---|---|---|---|
| CVE-2024-41050 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: cachefiles: cyclic allocation of msg_id to avoid reuse Reusing the msg_id after a maliciously completed reopen request may cause a read request to remain unprocessed and result in a hung, as shown below: t1 | t2 | t3 ------------------------------------------------- cachefiles_ondemand_select_req cachefiles_ondemand_object_is_close(A) cachefiles_ondemand_set_object_reopening(A) queue_work(fscache_object_wq, &info->work) ondemand_object_worker cachefiles_ondemand_init_object(A) cachefiles_ondemand_send_req(OPEN) // get msg_id 6 wait_for_completion(&req_A->done) cachefiles_ondemand_daemon_read // read msg_id 6 req_A cachefiles_ondemand_get_fd copy_to_user // Malicious completion msg_id 6 copen 6,-1 cachefiles_ondemand_copen complete(&req_A->done) // will not set the object to close // because ondemand_id && fd is valid. // ondemand_object_worker() is done // but the object is still reopening. // new open req_B cachefiles_ondemand_init_object(B) cachefiles_ondemand_send_req(OPEN) // reuse msg_id 6 process_open_req copen 6,A.size // The expected failed copen was executed successfully Expect copen to fail, and when it does, it closes fd, which sets the object to close, and then close triggers reopen again. However, due to msg_id reuse resulting in a successful copen, the anonymous fd is not closed until the daemon exits. Therefore read requests waiting for reopen to complete may trigger hung task. To avoid this issue, allocate the msg_id cyclically to avoid reusing the msg_id for a very short duration of time. | |||||
| CVE-2024-41049 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 7.0 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: filelock: fix potential use-after-free in posix_lock_inode Light Hsieh reported a KASAN UAF warning in trace_posix_lock_inode(). The request pointer had been changed earlier to point to a lock entry that was added to the inode's list. However, before the tracepoint could fire, another task raced in and freed that lock. Fix this by moving the tracepoint inside the spinlock, which should ensure that this doesn't happen. | |||||
| CVE-2024-41048 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: skmsg: Skip zero length skb in sk_msg_recvmsg When running BPF selftests (./test_progs -t sockmap_basic) on a Loongarch platform, the following kernel panic occurs: [...] Oops[#1]: CPU: 22 PID: 2824 Comm: test_progs Tainted: G OE 6.10.0-rc2+ #18 Hardware name: LOONGSON Dabieshan/Loongson-TC542F0, BIOS Loongson-UDK2018 ... ... ra: 90000000048bf6c0 sk_msg_recvmsg+0x120/0x560 ERA: 9000000004162774 copy_page_to_iter+0x74/0x1c0 CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE) PRMD: 0000000c (PPLV0 +PIE +PWE) EUEN: 00000007 (+FPE +SXE +ASXE -BTE) ECFG: 00071c1d (LIE=0,2-4,10-12 VS=7) ESTAT: 00010000 [PIL] (IS= ECode=1 EsubCode=0) BADV: 0000000000000040 PRID: 0014c011 (Loongson-64bit, Loongson-3C5000) Modules linked in: bpf_testmod(OE) xt_CHECKSUM xt_MASQUERADE xt_conntrack Process test_progs (pid: 2824, threadinfo=0000000000863a31, task=...) Stack : ... Call Trace: [<9000000004162774>] copy_page_to_iter+0x74/0x1c0 [<90000000048bf6c0>] sk_msg_recvmsg+0x120/0x560 [<90000000049f2b90>] tcp_bpf_recvmsg_parser+0x170/0x4e0 [<90000000049aae34>] inet_recvmsg+0x54/0x100 [<900000000481ad5c>] sock_recvmsg+0x7c/0xe0 [<900000000481e1a8>] __sys_recvfrom+0x108/0x1c0 [<900000000481e27c>] sys_recvfrom+0x1c/0x40 [<9000000004c076ec>] do_syscall+0x8c/0xc0 [<9000000003731da4>] handle_syscall+0xc4/0x160 Code: ... ---[ end trace 0000000000000000 ]--- Kernel panic - not syncing: Fatal exception Kernel relocated by 0x3510000 .text @ 0x9000000003710000 .data @ 0x9000000004d70000 .bss @ 0x9000000006469400 ---[ end Kernel panic - not syncing: Fatal exception ]--- [...] This crash happens every time when running sockmap_skb_verdict_shutdown subtest in sockmap_basic. This crash is because a NULL pointer is passed to page_address() in the sk_msg_recvmsg(). Due to the different implementations depending on the architecture, page_address(NULL) will trigger a panic on Loongarch platform but not on x86 platform. So this bug was hidden on x86 platform for a while, but now it is exposed on Loongarch platform. The root cause is that a zero length skb (skb->len == 0) was put on the queue. This zero length skb is a TCP FIN packet, which was sent by shutdown(), invoked in test_sockmap_skb_verdict_shutdown(): shutdown(p1, SHUT_WR); In this case, in sk_psock_skb_ingress_enqueue(), num_sge is zero, and no page is put to this sge (see sg_set_page in sg_set_page), but this empty sge is queued into ingress_msg list. And in sk_msg_recvmsg(), this empty sge is used, and a NULL page is got by sg_page(sge). Pass this NULL page to copy_page_to_iter(), which passes it to kmap_local_page() and to page_address(), then kernel panics. To solve this, we should skip this zero length skb. So in sk_msg_recvmsg(), if copy is zero, that means it's a zero length skb, skip invoking copy_page_to_iter(). We are using the EFAULT return triggered by copy_page_to_iter to check for is_fin in tcp_bpf.c. | |||||
| CVE-2024-41047 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: i40e: Fix XDP program unloading while removing the driver The commit 6533e558c650 ("i40e: Fix reset path while removing the driver") introduced a new PF state "__I40E_IN_REMOVE" to block modifying the XDP program while the driver is being removed. Unfortunately, such a change is useful only if the ".ndo_bpf()" callback was called out of the rmmod context because unloading the existing XDP program is also a part of driver removing procedure. In other words, from the rmmod context the driver is expected to unload the XDP program without reporting any errors. Otherwise, the kernel warning with callstack is printed out to dmesg. Example failing scenario: 1. Load the i40e driver. 2. Load the XDP program. 3. Unload the i40e driver (using "rmmod" command). The example kernel warning log: [ +0.004646] WARNING: CPU: 94 PID: 10395 at net/core/dev.c:9290 unregister_netdevice_many_notify+0x7a9/0x870 [...] [ +0.010959] RIP: 0010:unregister_netdevice_many_notify+0x7a9/0x870 [...] [ +0.002726] Call Trace: [ +0.002457] <TASK> [ +0.002119] ? __warn+0x80/0x120 [ +0.003245] ? unregister_netdevice_many_notify+0x7a9/0x870 [ +0.005586] ? report_bug+0x164/0x190 [ +0.003678] ? handle_bug+0x3c/0x80 [ +0.003503] ? exc_invalid_op+0x17/0x70 [ +0.003846] ? asm_exc_invalid_op+0x1a/0x20 [ +0.004200] ? unregister_netdevice_many_notify+0x7a9/0x870 [ +0.005579] ? unregister_netdevice_many_notify+0x3cc/0x870 [ +0.005586] unregister_netdevice_queue+0xf7/0x140 [ +0.004806] unregister_netdev+0x1c/0x30 [ +0.003933] i40e_vsi_release+0x87/0x2f0 [i40e] [ +0.004604] i40e_remove+0x1a1/0x420 [i40e] [ +0.004220] pci_device_remove+0x3f/0xb0 [ +0.003943] device_release_driver_internal+0x19f/0x200 [ +0.005243] driver_detach+0x48/0x90 [ +0.003586] bus_remove_driver+0x6d/0xf0 [ +0.003939] pci_unregister_driver+0x2e/0xb0 [ +0.004278] i40e_exit_module+0x10/0x5f0 [i40e] [ +0.004570] __do_sys_delete_module.isra.0+0x197/0x310 [ +0.005153] do_syscall_64+0x85/0x170 [ +0.003684] ? syscall_exit_to_user_mode+0x69/0x220 [ +0.004886] ? do_syscall_64+0x95/0x170 [ +0.003851] ? exc_page_fault+0x7e/0x180 [ +0.003932] entry_SYSCALL_64_after_hwframe+0x71/0x79 [ +0.005064] RIP: 0033:0x7f59dc9347cb [ +0.003648] Code: 73 01 c3 48 8b 0d 65 16 0c 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa b8 b0 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 35 16 0c 00 f7 d8 64 89 01 48 [ +0.018753] RSP: 002b:00007ffffac99048 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 [ +0.007577] RAX: ffffffffffffffda RBX: 0000559b9bb2f6e0 RCX: 00007f59dc9347cb [ +0.007140] RDX: 0000000000000000 RSI: 0000000000000800 RDI: 0000559b9bb2f748 [ +0.007146] RBP: 00007ffffac99070 R08: 1999999999999999 R09: 0000000000000000 [ +0.007133] R10: 00007f59dc9a5ac0 R11: 0000000000000206 R12: 0000000000000000 [ +0.007141] R13: 00007ffffac992d8 R14: 0000559b9bb2f6e0 R15: 0000000000000000 [ +0.007151] </TASK> [ +0.002204] ---[ end trace 0000000000000000 ]--- Fix this by checking if the XDP program is being loaded or unloaded. Then, block only loading a new program while "__I40E_IN_REMOVE" is set. Also, move testing "__I40E_IN_REMOVE" flag to the beginning of XDP_SETUP callback to avoid unnecessary operations and checks. | |||||
| CVE-2024-41046 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: net: ethernet: lantiq_etop: fix double free in detach The number of the currently released descriptor is never incremented which results in the same skb being released multiple times. | |||||
| CVE-2024-41044 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: ppp: reject claimed-as-LCP but actually malformed packets Since 'ppp_async_encode()' assumes valid LCP packets (with code from 1 to 7 inclusive), add 'ppp_check_packet()' to ensure that LCP packet has an actual body beyond PPP_LCP header bytes, and reject claimed-as-LCP but actually malformed data otherwise. | |||||
| CVE-2024-41042 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: prefer nft_chain_validate nft_chain_validate already performs loop detection because a cycle will result in a call stack overflow (ctx->level >= NFT_JUMP_STACK_SIZE). It also follows maps via ->validate callback in nft_lookup, so there appears no reason to iterate the maps again. nf_tables_check_loops() and all its helper functions can be removed. This improves ruleset load time significantly, from 23s down to 12s. This also fixes a crash bug. Old loop detection code can result in unbounded recursion: BUG: TASK stack guard page was hit at .... Oops: stack guard page: 0000 [#1] PREEMPT SMP KASAN CPU: 4 PID: 1539 Comm: nft Not tainted 6.10.0-rc5+ #1 [..] with a suitable ruleset during validation of register stores. I can't see any actual reason to attempt to check for this from nft_validate_register_store(), at this point the transaction is still in progress, so we don't have a full picture of the rule graph. For nf-next it might make sense to either remove it or make this depend on table->validate_state in case we could catch an error earlier (for improved error reporting to userspace). | |||||
| CVE-2024-41041 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: udp: Set SOCK_RCU_FREE earlier in udp_lib_get_port(). syzkaller triggered the warning [0] in udp_v4_early_demux(). In udp_v[46]_early_demux() and sk_lookup(), we do not touch the refcount of the looked-up sk and use sock_pfree() as skb->destructor, so we check SOCK_RCU_FREE to ensure that the sk is safe to access during the RCU grace period. Currently, SOCK_RCU_FREE is flagged for a bound socket after being put into the hash table. Moreover, the SOCK_RCU_FREE check is done too early in udp_v[46]_early_demux() and sk_lookup(), so there could be a small race window: CPU1 CPU2 ---- ---- udp_v4_early_demux() udp_lib_get_port() | |- hlist_add_head_rcu() |- sk = __udp4_lib_demux_lookup() | |- DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk)); `- sock_set_flag(sk, SOCK_RCU_FREE) We had the same bug in TCP and fixed it in commit 871019b22d1b ("net: set SOCK_RCU_FREE before inserting socket into hashtable"). Let's apply the same fix for UDP. [0]: WARNING: CPU: 0 PID: 11198 at net/ipv4/udp.c:2599 udp_v4_early_demux+0x481/0xb70 net/ipv4/udp.c:2599 Modules linked in: CPU: 0 PID: 11198 Comm: syz-executor.1 Not tainted 6.9.0-g93bda33046e7 #13 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 RIP: 0010:udp_v4_early_demux+0x481/0xb70 net/ipv4/udp.c:2599 Code: c5 7a 15 fe bb 01 00 00 00 44 89 e9 31 ff d3 e3 81 e3 bf ef ff ff 89 de e8 2c 74 15 fe 85 db 0f 85 02 06 00 00 e8 9f 7a 15 fe <0f> 0b e8 98 7a 15 fe 49 8d 7e 60 e8 4f 39 2f fe 49 c7 46 60 20 52 RSP: 0018:ffffc9000ce3fa58 EFLAGS: 00010293 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff8318c92c RDX: ffff888036ccde00 RSI: ffffffff8318c2f1 RDI: 0000000000000001 RBP: ffff88805a2dd6e0 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0001ffffffffffff R12: ffff88805a2dd680 R13: 0000000000000007 R14: ffff88800923f900 R15: ffff88805456004e FS: 00007fc449127640(0000) GS:ffff88807dc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fc449126e38 CR3: 000000003de4b002 CR4: 0000000000770ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000600 PKRU: 55555554 Call Trace: <TASK> ip_rcv_finish_core.constprop.0+0xbdd/0xd20 net/ipv4/ip_input.c:349 ip_rcv_finish+0xda/0x150 net/ipv4/ip_input.c:447 NF_HOOK include/linux/netfilter.h:314 [inline] NF_HOOK include/linux/netfilter.h:308 [inline] ip_rcv+0x16c/0x180 net/ipv4/ip_input.c:569 __netif_receive_skb_one_core+0xb3/0xe0 net/core/dev.c:5624 __netif_receive_skb+0x21/0xd0 net/core/dev.c:5738 netif_receive_skb_internal net/core/dev.c:5824 [inline] netif_receive_skb+0x271/0x300 net/core/dev.c:5884 tun_rx_batched drivers/net/tun.c:1549 [inline] tun_get_user+0x24db/0x2c50 drivers/net/tun.c:2002 tun_chr_write_iter+0x107/0x1a0 drivers/net/tun.c:2048 new_sync_write fs/read_write.c:497 [inline] vfs_write+0x76f/0x8d0 fs/read_write.c:590 ksys_write+0xbf/0x190 fs/read_write.c:643 __do_sys_write fs/read_write.c:655 [inline] __se_sys_write fs/read_write.c:652 [inline] __x64_sys_write+0x41/0x50 fs/read_write.c:652 x64_sys_call+0xe66/0x1990 arch/x86/include/generated/asm/syscalls_64.h:2 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0x4b/0x110 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x4b/0x53 RIP: 0033:0x7fc44a68bc1f Code: 89 54 24 18 48 89 74 24 10 89 7c 24 08 e8 e9 cf f5 ff 48 8b 54 24 18 48 8b 74 24 10 41 89 c0 8b 7c 24 08 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 31 44 89 c7 48 89 44 24 08 e8 3c d0 f5 ff 48 RSP: 002b:00007fc449126c90 EFLAGS: 00000293 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 00000000004bc050 RCX: 00007fc44a68bc1f R ---truncated--- | |||||
| CVE-2024-41040 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 7.0 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: net/sched: Fix UAF when resolving a clash KASAN reports the following UAF: BUG: KASAN: slab-use-after-free in tcf_ct_flow_table_process_conn+0x12b/0x380 [act_ct] Read of size 1 at addr ffff888c07603600 by task handler130/6469 Call Trace: <IRQ> dump_stack_lvl+0x48/0x70 print_address_description.constprop.0+0x33/0x3d0 print_report+0xc0/0x2b0 kasan_report+0xd0/0x120 __asan_load1+0x6c/0x80 tcf_ct_flow_table_process_conn+0x12b/0x380 [act_ct] tcf_ct_act+0x886/0x1350 [act_ct] tcf_action_exec+0xf8/0x1f0 fl_classify+0x355/0x360 [cls_flower] __tcf_classify+0x1fd/0x330 tcf_classify+0x21c/0x3c0 sch_handle_ingress.constprop.0+0x2c5/0x500 __netif_receive_skb_core.constprop.0+0xb25/0x1510 __netif_receive_skb_list_core+0x220/0x4c0 netif_receive_skb_list_internal+0x446/0x620 napi_complete_done+0x157/0x3d0 gro_cell_poll+0xcf/0x100 __napi_poll+0x65/0x310 net_rx_action+0x30c/0x5c0 __do_softirq+0x14f/0x491 __irq_exit_rcu+0x82/0xc0 irq_exit_rcu+0xe/0x20 common_interrupt+0xa1/0xb0 </IRQ> <TASK> asm_common_interrupt+0x27/0x40 Allocated by task 6469: kasan_save_stack+0x38/0x70 kasan_set_track+0x25/0x40 kasan_save_alloc_info+0x1e/0x40 __kasan_krealloc+0x133/0x190 krealloc+0xaa/0x130 nf_ct_ext_add+0xed/0x230 [nf_conntrack] tcf_ct_act+0x1095/0x1350 [act_ct] tcf_action_exec+0xf8/0x1f0 fl_classify+0x355/0x360 [cls_flower] __tcf_classify+0x1fd/0x330 tcf_classify+0x21c/0x3c0 sch_handle_ingress.constprop.0+0x2c5/0x500 __netif_receive_skb_core.constprop.0+0xb25/0x1510 __netif_receive_skb_list_core+0x220/0x4c0 netif_receive_skb_list_internal+0x446/0x620 napi_complete_done+0x157/0x3d0 gro_cell_poll+0xcf/0x100 __napi_poll+0x65/0x310 net_rx_action+0x30c/0x5c0 __do_softirq+0x14f/0x491 Freed by task 6469: kasan_save_stack+0x38/0x70 kasan_set_track+0x25/0x40 kasan_save_free_info+0x2b/0x60 ____kasan_slab_free+0x180/0x1f0 __kasan_slab_free+0x12/0x30 slab_free_freelist_hook+0xd2/0x1a0 __kmem_cache_free+0x1a2/0x2f0 kfree+0x78/0x120 nf_conntrack_free+0x74/0x130 [nf_conntrack] nf_ct_destroy+0xb2/0x140 [nf_conntrack] __nf_ct_resolve_clash+0x529/0x5d0 [nf_conntrack] nf_ct_resolve_clash+0xf6/0x490 [nf_conntrack] __nf_conntrack_confirm+0x2c6/0x770 [nf_conntrack] tcf_ct_act+0x12ad/0x1350 [act_ct] tcf_action_exec+0xf8/0x1f0 fl_classify+0x355/0x360 [cls_flower] __tcf_classify+0x1fd/0x330 tcf_classify+0x21c/0x3c0 sch_handle_ingress.constprop.0+0x2c5/0x500 __netif_receive_skb_core.constprop.0+0xb25/0x1510 __netif_receive_skb_list_core+0x220/0x4c0 netif_receive_skb_list_internal+0x446/0x620 napi_complete_done+0x157/0x3d0 gro_cell_poll+0xcf/0x100 __napi_poll+0x65/0x310 net_rx_action+0x30c/0x5c0 __do_softirq+0x14f/0x491 The ct may be dropped if a clash has been resolved but is still passed to the tcf_ct_flow_table_process_conn function for further usage. This issue can be fixed by retrieving ct from skb again after confirming conntrack. | |||||
| CVE-2024-41039 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: firmware: cs_dsp: Fix overflow checking of wmfw header Fix the checking that firmware file buffer is large enough for the wmfw header, to prevent overrunning the buffer. The original code tested that the firmware data buffer contained enough bytes for the sums of the size of the structs wmfw_header + wmfw_adsp1_sizes + wmfw_footer But wmfw_adsp1_sizes is only used on ADSP1 firmware. For ADSP2 and Halo Core the equivalent struct is wmfw_adsp2_sizes, which is 4 bytes longer. So the length check didn't guarantee that there are enough bytes in the firmware buffer for a header with wmfw_adsp2_sizes. This patch splits the length check into three separate parts. Each of the wmfw_header, wmfw_adsp?_sizes and wmfw_footer are checked separately before they are used. | |||||
| CVE-2024-41038 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: firmware: cs_dsp: Prevent buffer overrun when processing V2 alg headers Check that all fields of a V2 algorithm header fit into the available firmware data buffer. The wmfw V2 format introduced variable-length strings in the algorithm block header. This means the overall header length is variable, and the position of most fields varies depending on the length of the string fields. Each field must be checked to ensure that it does not overflow the firmware data buffer. As this ia bugfix patch, the fixes avoid making any significant change to the existing code. This makes it easier to review and less likely to introduce new bugs. | |||||
| CVE-2024-41036 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: net: ks8851: Fix deadlock with the SPI chip variant When SMP is enabled and spinlocks are actually functional then there is a deadlock with the 'statelock' spinlock between ks8851_start_xmit_spi and ks8851_irq: watchdog: BUG: soft lockup - CPU#0 stuck for 27s! call trace: queued_spin_lock_slowpath+0x100/0x284 do_raw_spin_lock+0x34/0x44 ks8851_start_xmit_spi+0x30/0xb8 ks8851_start_xmit+0x14/0x20 netdev_start_xmit+0x40/0x6c dev_hard_start_xmit+0x6c/0xbc sch_direct_xmit+0xa4/0x22c __qdisc_run+0x138/0x3fc qdisc_run+0x24/0x3c net_tx_action+0xf8/0x130 handle_softirqs+0x1ac/0x1f0 __do_softirq+0x14/0x20 ____do_softirq+0x10/0x1c call_on_irq_stack+0x3c/0x58 do_softirq_own_stack+0x1c/0x28 __irq_exit_rcu+0x54/0x9c irq_exit_rcu+0x10/0x1c el1_interrupt+0x38/0x50 el1h_64_irq_handler+0x18/0x24 el1h_64_irq+0x64/0x68 __netif_schedule+0x6c/0x80 netif_tx_wake_queue+0x38/0x48 ks8851_irq+0xb8/0x2c8 irq_thread_fn+0x2c/0x74 irq_thread+0x10c/0x1b0 kthread+0xc8/0xd8 ret_from_fork+0x10/0x20 This issue has not been identified earlier because tests were done on a device with SMP disabled and so spinlocks were actually NOPs. Now use spin_(un)lock_bh for TX queue related locking to avoid execution of softirq work synchronously that would lead to a deadlock. | |||||
| CVE-2024-41035 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: USB: core: Fix duplicate endpoint bug by clearing reserved bits in the descriptor Syzbot has identified a bug in usbcore (see the Closes: tag below) caused by our assumption that the reserved bits in an endpoint descriptor's bEndpointAddress field will always be 0. As a result of the bug, the endpoint_is_duplicate() routine in config.c (and possibly other routines as well) may believe that two descriptors are for distinct endpoints, even though they have the same direction and endpoint number. This can lead to confusion, including the bug identified by syzbot (two descriptors with matching endpoint numbers and directions, where one was interrupt and the other was bulk). To fix the bug, we will clear the reserved bits in bEndpointAddress when we parse the descriptor. (Note that both the USB-2.0 and USB-3.1 specs say these bits are "Reserved, reset to zero".) This requires us to make a copy of the descriptor earlier in usb_parse_endpoint() and use the copy instead of the original when checking for duplicates. | |||||
| CVE-2024-41034 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix kernel bug on rename operation of broken directory Syzbot reported that in rename directory operation on broken directory on nilfs2, __block_write_begin_int() called to prepare block write may fail BUG_ON check for access exceeding the folio/page size. This is because nilfs_dotdot(), which gets parent directory reference entry ("..") of the directory to be moved or renamed, does not check consistency enough, and may return location exceeding folio/page size for broken directories. Fix this issue by checking required directory entries ("." and "..") in the first chunk of the directory in nilfs_dotdot(). | |||||
| CVE-2024-41030 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: ksmbd: discard write access to the directory open may_open() does not allow a directory to be opened with the write access. However, some writing flags set by client result in adding write access on server, making ksmbd incompatible with FUSE file system. Simply, let's discard the write access when opening a directory. list_add corruption. next is NULL. ------------[ cut here ]------------ kernel BUG at lib/list_debug.c:26! pc : __list_add_valid+0x88/0xbc lr : __list_add_valid+0x88/0xbc Call trace: __list_add_valid+0x88/0xbc fuse_finish_open+0x11c/0x170 fuse_open_common+0x284/0x5e8 fuse_dir_open+0x14/0x24 do_dentry_open+0x2a4/0x4e0 dentry_open+0x50/0x80 smb2_open+0xbe4/0x15a4 handle_ksmbd_work+0x478/0x5ec process_one_work+0x1b4/0x448 worker_thread+0x25c/0x430 kthread+0x104/0x1d4 ret_from_fork+0x10/0x20 | |||||
| CVE-2024-41028 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: platform/x86: toshiba_acpi: Fix array out-of-bounds access In order to use toshiba_dmi_quirks[] together with the standard DMI matching functions, it must be terminated by a empty entry. Since this entry is missing, an array out-of-bounds access occurs every time the quirk list is processed. Fix this by adding the terminating empty entry. | |||||
| CVE-2024-41027 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 3.3 LOW |
| In the Linux kernel, the following vulnerability has been resolved: Fix userfaultfd_api to return EINVAL as expected Currently if we request a feature that is not set in the Kernel config we fail silently and return all the available features. However, the man page indicates we should return an EINVAL. We need to fix this issue since we can end up with a Kernel warning should a program request the feature UFFD_FEATURE_WP_UNPOPULATED on a kernel with the config not set with this feature. [ 200.812896] WARNING: CPU: 91 PID: 13634 at mm/memory.c:1660 zap_pte_range+0x43d/0x660 [ 200.820738] Modules linked in: [ 200.869387] CPU: 91 PID: 13634 Comm: userfaultfd Kdump: loaded Not tainted 6.9.0-rc5+ #8 [ 200.877477] Hardware name: Dell Inc. PowerEdge R6525/0N7YGH, BIOS 2.7.3 03/30/2022 [ 200.885052] RIP: 0010:zap_pte_range+0x43d/0x660 | |||||
| CVE-2024-41022 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix signedness bug in sdma_v4_0_process_trap_irq() The "instance" variable needs to be signed for the error handling to work. | |||||
| CVE-2024-41020 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 4.7 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: filelock: Fix fcntl/close race recovery compat path When I wrote commit 3cad1bc01041 ("filelock: Remove locks reliably when fcntl/close race is detected"), I missed that there are two copies of the code I was patching: The normal version, and the version for 64-bit offsets on 32-bit kernels. Thanks to Greg KH for stumbling over this while doing the stable backport... Apply exactly the same fix to the compat path for 32-bit kernels. | |||||
| CVE-2024-41019 | 1 Linux | 1 Linux Kernel | 2025-11-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Validate ff offset This adds sanity checks for ff offset. There is a check on rt->first_free at first, but walking through by ff without any check. If the second ff is a large offset. We may encounter an out-of-bound read. | |||||
