Filtered by vendor Linux
Subscribe
Total
10482 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2024-41048 | 1 Linux | 1 Linux Kernel | 2025-02-03 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: skmsg: Skip zero length skb in sk_msg_recvmsg When running BPF selftests (./test_progs -t sockmap_basic) on a Loongarch platform, the following kernel panic occurs: [...] Oops[#1]: CPU: 22 PID: 2824 Comm: test_progs Tainted: G OE 6.10.0-rc2+ #18 Hardware name: LOONGSON Dabieshan/Loongson-TC542F0, BIOS Loongson-UDK2018 ... ... ra: 90000000048bf6c0 sk_msg_recvmsg+0x120/0x560 ERA: 9000000004162774 copy_page_to_iter+0x74/0x1c0 CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE) PRMD: 0000000c (PPLV0 +PIE +PWE) EUEN: 00000007 (+FPE +SXE +ASXE -BTE) ECFG: 00071c1d (LIE=0,2-4,10-12 VS=7) ESTAT: 00010000 [PIL] (IS= ECode=1 EsubCode=0) BADV: 0000000000000040 PRID: 0014c011 (Loongson-64bit, Loongson-3C5000) Modules linked in: bpf_testmod(OE) xt_CHECKSUM xt_MASQUERADE xt_conntrack Process test_progs (pid: 2824, threadinfo=0000000000863a31, task=...) Stack : ... Call Trace: [<9000000004162774>] copy_page_to_iter+0x74/0x1c0 [<90000000048bf6c0>] sk_msg_recvmsg+0x120/0x560 [<90000000049f2b90>] tcp_bpf_recvmsg_parser+0x170/0x4e0 [<90000000049aae34>] inet_recvmsg+0x54/0x100 [<900000000481ad5c>] sock_recvmsg+0x7c/0xe0 [<900000000481e1a8>] __sys_recvfrom+0x108/0x1c0 [<900000000481e27c>] sys_recvfrom+0x1c/0x40 [<9000000004c076ec>] do_syscall+0x8c/0xc0 [<9000000003731da4>] handle_syscall+0xc4/0x160 Code: ... ---[ end trace 0000000000000000 ]--- Kernel panic - not syncing: Fatal exception Kernel relocated by 0x3510000 .text @ 0x9000000003710000 .data @ 0x9000000004d70000 .bss @ 0x9000000006469400 ---[ end Kernel panic - not syncing: Fatal exception ]--- [...] This crash happens every time when running sockmap_skb_verdict_shutdown subtest in sockmap_basic. This crash is because a NULL pointer is passed to page_address() in the sk_msg_recvmsg(). Due to the different implementations depending on the architecture, page_address(NULL) will trigger a panic on Loongarch platform but not on x86 platform. So this bug was hidden on x86 platform for a while, but now it is exposed on Loongarch platform. The root cause is that a zero length skb (skb->len == 0) was put on the queue. This zero length skb is a TCP FIN packet, which was sent by shutdown(), invoked in test_sockmap_skb_verdict_shutdown(): shutdown(p1, SHUT_WR); In this case, in sk_psock_skb_ingress_enqueue(), num_sge is zero, and no page is put to this sge (see sg_set_page in sg_set_page), but this empty sge is queued into ingress_msg list. And in sk_msg_recvmsg(), this empty sge is used, and a NULL page is got by sg_page(sge). Pass this NULL page to copy_page_to_iter(), which passes it to kmap_local_page() and to page_address(), then kernel panics. To solve this, we should skip this zero length skb. So in sk_msg_recvmsg(), if copy is zero, that means it's a zero length skb, skip invoking copy_page_to_iter(). We are using the EFAULT return triggered by copy_page_to_iter to check for is_fin in tcp_bpf.c. | |||||
CVE-2024-41025 | 1 Linux | 1 Linux Kernel | 2025-02-03 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: misc: fastrpc: Fix memory leak in audio daemon attach operation Audio PD daemon send the name as part of the init IOCTL call. This name needs to be copied to kernel for which memory is allocated. This memory is never freed which might result in memory leak. Free the memory when it is not needed. | |||||
CVE-2022-48784 | 1 Linux | 1 Linux Kernel | 2025-02-03 | N/A | 4.7 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: cfg80211: fix race in netlink owner interface destruction My previous fix here to fix the deadlock left a race where the exact same deadlock (see the original commit referenced below) can still happen if cfg80211_destroy_ifaces() already runs while nl80211_netlink_notify() is still marking some interfaces as nl_owner_dead. The race happens because we have two loops here - first we dev_close() all the netdevs, and then we destroy them. If we also have two netdevs (first one need only be a wdev though) then we can find one during the first iteration, close it, and go to the second iteration -- but then find two, and try to destroy also the one we didn't close yet. Fix this by only iterating once. | |||||
CVE-2024-40972 | 1 Linux | 1 Linux Kernel | 2025-02-03 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: ext4: do not create EA inode under buffer lock ext4_xattr_set_entry() creates new EA inodes while holding buffer lock on the external xattr block. This is problematic as it nests all the allocation locking (which acquires locks on other buffers) under the buffer lock. This can even deadlock when the filesystem is corrupted and e.g. quota file is setup to contain xattr block as data block. Move the allocation of EA inode out of ext4_xattr_set_entry() into the callers. | |||||
CVE-2024-40947 | 1 Linux | 1 Linux Kernel | 2025-02-03 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: ima: Avoid blocking in RCU read-side critical section A panic happens in ima_match_policy: BUG: unable to handle kernel NULL pointer dereference at 0000000000000010 PGD 42f873067 P4D 0 Oops: 0000 [#1] SMP NOPTI CPU: 5 PID: 1286325 Comm: kubeletmonit.sh Kdump: loaded Tainted: P Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015 RIP: 0010:ima_match_policy+0x84/0x450 Code: 49 89 fc 41 89 cf 31 ed 89 44 24 14 eb 1c 44 39 7b 18 74 26 41 83 ff 05 74 20 48 8b 1b 48 3b 1d f2 b9 f4 00 0f 84 9c 01 00 00 <44> 85 73 10 74 ea 44 8b 6b 14 41 f6 c5 01 75 d4 41 f6 c5 02 74 0f RSP: 0018:ff71570009e07a80 EFLAGS: 00010207 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000200 RDX: ffffffffad8dc7c0 RSI: 0000000024924925 RDI: ff3e27850dea2000 RBP: 0000000000000000 R08: 0000000000000000 R09: ffffffffabfce739 R10: ff3e27810cc42400 R11: 0000000000000000 R12: ff3e2781825ef970 R13: 00000000ff3e2785 R14: 000000000000000c R15: 0000000000000001 FS: 00007f5195b51740(0000) GS:ff3e278b12d40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000010 CR3: 0000000626d24002 CR4: 0000000000361ee0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ima_get_action+0x22/0x30 process_measurement+0xb0/0x830 ? page_add_file_rmap+0x15/0x170 ? alloc_set_pte+0x269/0x4c0 ? prep_new_page+0x81/0x140 ? simple_xattr_get+0x75/0xa0 ? selinux_file_open+0x9d/0xf0 ima_file_check+0x64/0x90 path_openat+0x571/0x1720 do_filp_open+0x9b/0x110 ? page_counter_try_charge+0x57/0xc0 ? files_cgroup_alloc_fd+0x38/0x60 ? __alloc_fd+0xd4/0x250 ? do_sys_open+0x1bd/0x250 do_sys_open+0x1bd/0x250 do_syscall_64+0x5d/0x1d0 entry_SYSCALL_64_after_hwframe+0x65/0xca Commit c7423dbdbc9e ("ima: Handle -ESTALE returned by ima_filter_rule_match()") introduced call to ima_lsm_copy_rule within a RCU read-side critical section which contains kmalloc with GFP_KERNEL. This implies a possible sleep and violates limitations of RCU read-side critical sections on non-PREEMPT systems. Sleeping within RCU read-side critical section might cause synchronize_rcu() returning early and break RCU protection, allowing a UAF to happen. The root cause of this issue could be described as follows: | Thread A | Thread B | | |ima_match_policy | | | rcu_read_lock | |ima_lsm_update_rule | | | synchronize_rcu | | | | kmalloc(GFP_KERNEL)| | | sleep | ==> synchronize_rcu returns early | kfree(entry) | | | | entry = entry->next| ==> UAF happens and entry now becomes NULL (or could be anything). | | entry->action | ==> Accessing entry might cause panic. To fix this issue, we are converting all kmalloc that is called within RCU read-side critical section to use GFP_ATOMIC. [PM: fixed missing comment, long lines, !CONFIG_IMA_LSM_RULES case] | |||||
CVE-2024-40936 | 1 Linux | 1 Linux Kernel | 2025-02-03 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: cxl/region: Fix memregion leaks in devm_cxl_add_region() Move the mode verification to __create_region() before allocating the memregion to avoid the memregion leaks. | |||||
CVE-2024-40933 | 1 Linux | 1 Linux Kernel | 2025-02-03 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: iio: temperature: mlx90635: Fix ERR_PTR dereference in mlx90635_probe() When devm_regmap_init_i2c() fails, regmap_ee could be error pointer, instead of checking for IS_ERR(regmap_ee), regmap is checked which looks like a copy paste error. | |||||
CVE-2024-40928 | 1 Linux | 1 Linux Kernel | 2025-02-03 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: net: ethtool: fix the error condition in ethtool_get_phy_stats_ethtool() Clang static checker (scan-build) warning: net/ethtool/ioctl.c:line 2233, column 2 Called function pointer is null (null dereference). Return '-EOPNOTSUPP' when 'ops->get_ethtool_phy_stats' is NULL to fix this typo error. | |||||
CVE-2024-40919 | 1 Linux | 1 Linux Kernel | 2025-02-03 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: bnxt_en: Adjust logging of firmware messages in case of released token in __hwrm_send() In case of token is released due to token->state == BNXT_HWRM_DEFERRED, released token (set to NULL) is used in log messages. This issue is expected to be prevented by HWRM_ERR_CODE_PF_UNAVAILABLE error code. But this error code is returned by recent firmware. So some firmware may not return it. This may lead to NULL pointer dereference. Adjust this issue by adding token pointer check. Found by Linux Verification Center (linuxtesting.org) with SVACE. | |||||
CVE-2024-43815 | 1 Linux | 1 Linux Kernel | 2025-02-03 | N/A | 7.1 HIGH |
In the Linux kernel, the following vulnerability has been resolved: crypto: mxs-dcp - Ensure payload is zero when using key slot We could leak stack memory through the payload field when running AES with a key from one of the hardware's key slots. Fix this by ensuring the payload field is set to 0 in such cases. This does not affect the common use case when the key is supplied from main memory via the descriptor payload. | |||||
CVE-2024-53224 | 1 Linux | 1 Linux Kernel | 2025-02-03 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: RDMA/mlx5: Move events notifier registration to be after device registration Move pkey change work initialization and cleanup from device resources stage to notifier stage, since this is the stage which handles this work events. Fix a race between the device deregistration and pkey change work by moving MLX5_IB_STAGE_DEVICE_NOTIFIER to be after MLX5_IB_STAGE_IB_REG in order to ensure that the notifier is deregistered before the device during cleanup. Which ensures there are no works that are being executed after the device has already unregistered which can cause the panic below. BUG: kernel NULL pointer dereference, address: 0000000000000000 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 630071 Comm: kworker/1:2 Kdump: loaded Tainted: G W OE --------- --- 5.14.0-162.6.1.el9_1.x86_64 #1 Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS 090008 02/27/2023 Workqueue: events pkey_change_handler [mlx5_ib] RIP: 0010:setup_qp+0x38/0x1f0 [mlx5_ib] Code: ee 41 54 45 31 e4 55 89 f5 53 48 89 fb 48 83 ec 20 8b 77 08 65 48 8b 04 25 28 00 00 00 48 89 44 24 18 48 8b 07 48 8d 4c 24 16 <4c> 8b 38 49 8b 87 80 0b 00 00 4c 89 ff 48 8b 80 08 05 00 00 8b 40 RSP: 0018:ffffbcc54068be20 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffff954054494128 RCX: ffffbcc54068be36 RDX: ffff954004934000 RSI: 0000000000000001 RDI: ffff954054494128 RBP: 0000000000000023 R08: ffff954001be2c20 R09: 0000000000000001 R10: ffff954001be2c20 R11: ffff9540260133c0 R12: 0000000000000000 R13: 0000000000000023 R14: 0000000000000000 R15: ffff9540ffcb0905 FS: 0000000000000000(0000) GS:ffff9540ffc80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 000000010625c001 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: mlx5_ib_gsi_pkey_change+0x20/0x40 [mlx5_ib] process_one_work+0x1e8/0x3c0 worker_thread+0x50/0x3b0 ? rescuer_thread+0x380/0x380 kthread+0x149/0x170 ? set_kthread_struct+0x50/0x50 ret_from_fork+0x22/0x30 Modules linked in: rdma_ucm(OE) rdma_cm(OE) iw_cm(OE) ib_ipoib(OE) ib_cm(OE) ib_umad(OE) mlx5_ib(OE) mlx5_fwctl(OE) fwctl(OE) ib_uverbs(OE) mlx5_core(OE) mlxdevm(OE) ib_core(OE) mlx_compat(OE) psample mlxfw(OE) tls knem(OE) netconsole nfsv3 nfs_acl nfs lockd grace fscache netfs qrtr rfkill sunrpc intel_rapl_msr intel_rapl_common rapl hv_balloon hv_utils i2c_piix4 pcspkr joydev fuse ext4 mbcache jbd2 sr_mod sd_mod cdrom t10_pi sg ata_generic pci_hyperv pci_hyperv_intf hyperv_drm drm_shmem_helper drm_kms_helper hv_storvsc syscopyarea hv_netvsc sysfillrect sysimgblt hid_hyperv fb_sys_fops scsi_transport_fc hyperv_keyboard drm ata_piix crct10dif_pclmul crc32_pclmul crc32c_intel libata ghash_clmulni_intel hv_vmbus serio_raw [last unloaded: ib_core] CR2: 0000000000000000 ---[ end trace f6f8be4eae12f7bc ]--- | |||||
CVE-2024-53215 | 1 Linux | 1 Linux Kernel | 2025-02-03 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: svcrdma: fix miss destroy percpu_counter in svc_rdma_proc_init() There's issue as follows: RPC: Registered rdma transport module. RPC: Registered rdma backchannel transport module. RPC: Unregistered rdma transport module. RPC: Unregistered rdma backchannel transport module. BUG: unable to handle page fault for address: fffffbfff80c609a PGD 123fee067 P4D 123fee067 PUD 123fea067 PMD 10c624067 PTE 0 Oops: Oops: 0000 [#1] PREEMPT SMP KASAN NOPTI RIP: 0010:percpu_counter_destroy_many+0xf7/0x2a0 Call Trace: <TASK> __die+0x1f/0x70 page_fault_oops+0x2cd/0x860 spurious_kernel_fault+0x36/0x450 do_kern_addr_fault+0xca/0x100 exc_page_fault+0x128/0x150 asm_exc_page_fault+0x26/0x30 percpu_counter_destroy_many+0xf7/0x2a0 mmdrop+0x209/0x350 finish_task_switch.isra.0+0x481/0x840 schedule_tail+0xe/0xd0 ret_from_fork+0x23/0x80 ret_from_fork_asm+0x1a/0x30 </TASK> If register_sysctl() return NULL, then svc_rdma_proc_cleanup() will not destroy the percpu counters which init in svc_rdma_proc_init(). If CONFIG_HOTPLUG_CPU is enabled, residual nodes may be in the 'percpu_counters' list. The above issue may occur once the module is removed. If the CONFIG_HOTPLUG_CPU configuration is not enabled, memory leakage occurs. To solve above issue just destroy all percpu counters when register_sysctl() return NULL. | |||||
CVE-2024-53175 | 1 Linux | 1 Linux Kernel | 2025-02-03 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: ipc: fix memleak if msg_init_ns failed in create_ipc_ns Percpu memory allocation may failed during create_ipc_ns however this fail is not handled properly since ipc sysctls and mq sysctls is not released properly. Fix this by release these two resource when failure. Here is the kmemleak stack when percpu failed: unreferenced object 0xffff88819de2a600 (size 512): comm "shmem_2nstest", pid 120711, jiffies 4300542254 hex dump (first 32 bytes): 60 aa 9d 84 ff ff ff ff fc 18 48 b2 84 88 ff ff `.........H..... 04 00 00 00 a4 01 00 00 20 e4 56 81 ff ff ff ff ........ .V..... backtrace (crc be7cba35): [<ffffffff81b43f83>] __kmalloc_node_track_caller_noprof+0x333/0x420 [<ffffffff81a52e56>] kmemdup_noprof+0x26/0x50 [<ffffffff821b2f37>] setup_mq_sysctls+0x57/0x1d0 [<ffffffff821b29cc>] copy_ipcs+0x29c/0x3b0 [<ffffffff815d6a10>] create_new_namespaces+0x1d0/0x920 [<ffffffff815d7449>] copy_namespaces+0x2e9/0x3e0 [<ffffffff815458f3>] copy_process+0x29f3/0x7ff0 [<ffffffff8154b080>] kernel_clone+0xc0/0x650 [<ffffffff8154b6b1>] __do_sys_clone+0xa1/0xe0 [<ffffffff843df8ff>] do_syscall_64+0xbf/0x1c0 [<ffffffff846000b0>] entry_SYSCALL_64_after_hwframe+0x4b/0x53 | |||||
CVE-2024-53161 | 1 Linux | 1 Linux Kernel | 2025-02-03 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: EDAC/bluefield: Fix potential integer overflow The 64-bit argument for the "get DIMM info" SMC call consists of mem_ctrl_idx left-shifted 16 bits and OR-ed with DIMM index. With mem_ctrl_idx defined as 32-bits wide the left-shift operation truncates the upper 16 bits of information during the calculation of the SMC argument. The mem_ctrl_idx stack variable must be defined as 64-bits wide to prevent any potential integer overflow, i.e. loss of data from upper 16 bits. | |||||
CVE-2024-42106 | 1 Linux | 1 Linux Kernel | 2025-02-03 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: inet_diag: Initialize pad field in struct inet_diag_req_v2 KMSAN reported uninit-value access in raw_lookup() [1]. Diag for raw sockets uses the pad field in struct inet_diag_req_v2 for the underlying protocol. This field corresponds to the sdiag_raw_protocol field in struct inet_diag_req_raw. inet_diag_get_exact_compat() converts inet_diag_req to inet_diag_req_v2, but leaves the pad field uninitialized. So the issue occurs when raw_lookup() accesses the sdiag_raw_protocol field. Fix this by initializing the pad field in inet_diag_get_exact_compat(). Also, do the same fix in inet_diag_dump_compat() to avoid the similar issue in the future. [1] BUG: KMSAN: uninit-value in raw_lookup net/ipv4/raw_diag.c:49 [inline] BUG: KMSAN: uninit-value in raw_sock_get+0x657/0x800 net/ipv4/raw_diag.c:71 raw_lookup net/ipv4/raw_diag.c:49 [inline] raw_sock_get+0x657/0x800 net/ipv4/raw_diag.c:71 raw_diag_dump_one+0xa1/0x660 net/ipv4/raw_diag.c:99 inet_diag_cmd_exact+0x7d9/0x980 inet_diag_get_exact_compat net/ipv4/inet_diag.c:1404 [inline] inet_diag_rcv_msg_compat+0x469/0x530 net/ipv4/inet_diag.c:1426 sock_diag_rcv_msg+0x23d/0x740 net/core/sock_diag.c:282 netlink_rcv_skb+0x537/0x670 net/netlink/af_netlink.c:2564 sock_diag_rcv+0x35/0x40 net/core/sock_diag.c:297 netlink_unicast_kernel net/netlink/af_netlink.c:1335 [inline] netlink_unicast+0xe74/0x1240 net/netlink/af_netlink.c:1361 netlink_sendmsg+0x10c6/0x1260 net/netlink/af_netlink.c:1905 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x332/0x3d0 net/socket.c:745 ____sys_sendmsg+0x7f0/0xb70 net/socket.c:2585 ___sys_sendmsg+0x271/0x3b0 net/socket.c:2639 __sys_sendmsg net/socket.c:2668 [inline] __do_sys_sendmsg net/socket.c:2677 [inline] __se_sys_sendmsg net/socket.c:2675 [inline] __x64_sys_sendmsg+0x27e/0x4a0 net/socket.c:2675 x64_sys_call+0x135e/0x3ce0 arch/x86/include/generated/asm/syscalls_64.h:47 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xd9/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Uninit was stored to memory at: raw_sock_get+0x650/0x800 net/ipv4/raw_diag.c:71 raw_diag_dump_one+0xa1/0x660 net/ipv4/raw_diag.c:99 inet_diag_cmd_exact+0x7d9/0x980 inet_diag_get_exact_compat net/ipv4/inet_diag.c:1404 [inline] inet_diag_rcv_msg_compat+0x469/0x530 net/ipv4/inet_diag.c:1426 sock_diag_rcv_msg+0x23d/0x740 net/core/sock_diag.c:282 netlink_rcv_skb+0x537/0x670 net/netlink/af_netlink.c:2564 sock_diag_rcv+0x35/0x40 net/core/sock_diag.c:297 netlink_unicast_kernel net/netlink/af_netlink.c:1335 [inline] netlink_unicast+0xe74/0x1240 net/netlink/af_netlink.c:1361 netlink_sendmsg+0x10c6/0x1260 net/netlink/af_netlink.c:1905 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x332/0x3d0 net/socket.c:745 ____sys_sendmsg+0x7f0/0xb70 net/socket.c:2585 ___sys_sendmsg+0x271/0x3b0 net/socket.c:2639 __sys_sendmsg net/socket.c:2668 [inline] __do_sys_sendmsg net/socket.c:2677 [inline] __se_sys_sendmsg net/socket.c:2675 [inline] __x64_sys_sendmsg+0x27e/0x4a0 net/socket.c:2675 x64_sys_call+0x135e/0x3ce0 arch/x86/include/generated/asm/syscalls_64.h:47 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xd9/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Local variable req.i created at: inet_diag_get_exact_compat net/ipv4/inet_diag.c:1396 [inline] inet_diag_rcv_msg_compat+0x2a6/0x530 net/ipv4/inet_diag.c:1426 sock_diag_rcv_msg+0x23d/0x740 net/core/sock_diag.c:282 CPU: 1 PID: 8888 Comm: syz-executor.6 Not tainted 6.10.0-rc4-00217-g35bb670d65fc #32 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014 | |||||
CVE-2024-42089 | 1 Linux | 1 Linux Kernel | 2025-02-03 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: ASoC: fsl-asoc-card: set priv->pdev before using it priv->pdev pointer was set after being used in fsl_asoc_card_audmux_init(). Move this assignment at the start of the probe function, so sub-functions can correctly use pdev through priv. fsl_asoc_card_audmux_init() dereferences priv->pdev to get access to the dev struct, used with dev_err macros. As priv is zero-initialised, there would be a NULL pointer dereference. Note that if priv->dev is dereferenced before assignment but never used, for example if there is no error to be printed, the driver won't crash probably due to compiler optimisations. | |||||
CVE-2024-41077 | 1 Linux | 1 Linux Kernel | 2025-02-03 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: null_blk: fix validation of block size Block size should be between 512 and PAGE_SIZE and be a power of 2. The current check does not validate this, so update the check. Without this patch, null_blk would Oops due to a null pointer deref when loaded with bs=1536 [1]. [axboe: remove unnecessary braces and != 0 check] | |||||
CVE-2024-56568 | 1 Linux | 1 Linux Kernel | 2025-02-03 | N/A | 4.7 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: iommu/arm-smmu: Defer probe of clients after smmu device bound Null pointer dereference occurs due to a race between smmu driver probe and client driver probe, when of_dma_configure() for client is called after the iommu_device_register() for smmu driver probe has executed but before the driver_bound() for smmu driver has been called. Following is how the race occurs: T1:Smmu device probe T2: Client device probe really_probe() arm_smmu_device_probe() iommu_device_register() really_probe() platform_dma_configure() of_dma_configure() of_dma_configure_id() of_iommu_configure() iommu_probe_device() iommu_init_device() arm_smmu_probe_device() arm_smmu_get_by_fwnode() driver_find_device_by_fwnode() driver_find_device() next_device() klist_next() /* null ptr assigned to smmu */ /* null ptr dereference while smmu->streamid_mask */ driver_bound() klist_add_tail() When this null smmu pointer is dereferenced later in arm_smmu_probe_device, the device crashes. Fix this by deferring the probe of the client device until the smmu device has bound to the arm smmu driver. [will: Add comment] | |||||
CVE-2024-56544 | 1 Linux | 1 Linux Kernel | 2025-02-03 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: udmabuf: change folios array from kmalloc to kvmalloc When PAGE_SIZE 4096, MAX_PAGE_ORDER 10, 64bit machine, page_alloc only support 4MB. If above this, trigger this warn and return NULL. udmabuf can change size limit, if change it to 3072(3GB), and then alloc 3GB udmabuf, will fail create. [ 4080.876581] ------------[ cut here ]------------ [ 4080.876843] WARNING: CPU: 3 PID: 2015 at mm/page_alloc.c:4556 __alloc_pages+0x2c8/0x350 [ 4080.878839] RIP: 0010:__alloc_pages+0x2c8/0x350 [ 4080.879470] Call Trace: [ 4080.879473] <TASK> [ 4080.879473] ? __alloc_pages+0x2c8/0x350 [ 4080.879475] ? __warn.cold+0x8e/0xe8 [ 4080.880647] ? __alloc_pages+0x2c8/0x350 [ 4080.880909] ? report_bug+0xff/0x140 [ 4080.881175] ? handle_bug+0x3c/0x80 [ 4080.881556] ? exc_invalid_op+0x17/0x70 [ 4080.881559] ? asm_exc_invalid_op+0x1a/0x20 [ 4080.882077] ? udmabuf_create+0x131/0x400 Because MAX_PAGE_ORDER, kmalloc can max alloc 4096 * (1 << 10), 4MB memory, each array entry is pointer(8byte), so can save 524288 pages(2GB). Further more, costly order(order 3) may not be guaranteed that it can be applied for, due to fragmentation. This patch change udmabuf array use kvmalloc_array, this can fallback alloc into vmalloc, which can guarantee allocation for any size and does not affect the performance of kmalloc allocations. | |||||
CVE-2024-56540 | 1 Linux | 1 Linux Kernel | 2025-02-03 | N/A | 4.7 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: accel/ivpu: Prevent recovery invocation during probe and resume Refactor IPC send and receive functions to allow correct handling of operations that should not trigger a recovery process. Expose ivpu_send_receive_internal(), which is now utilized by the D0i3 entry, DCT initialization, and HWS initialization functions. These functions have been modified to return error codes gracefully, rather than initiating recovery. The updated functions are invoked within ivpu_probe() and ivpu_resume(), ensuring that any errors encountered during these stages result in a proper teardown or shutdown sequence. The previous approach of triggering recovery within these functions could lead to a race condition, potentially causing undefined behavior and kernel crashes due to null pointer dereferences. |