Vulnerabilities (CVE)

Filtered by vendor Linux Subscribe
Total 10223 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2024-27059 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-01-14 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: USB: usb-storage: Prevent divide-by-0 error in isd200_ata_command The isd200 sub-driver in usb-storage uses the HEADS and SECTORS values in the ATA ID information to calculate cylinder and head values when creating a CDB for READ or WRITE commands. The calculation involves division and modulus operations, which will cause a crash if either of these values is 0. While this never happens with a genuine device, it could happen with a flawed or subversive emulation, as reported by the syzbot fuzzer. Protect against this possibility by refusing to bind to the device if either the ATA_ID_HEADS or ATA_ID_SECTORS value in the device's ID information is 0. This requires isd200_Initialization() to return a negative error code when initialization fails; currently it always returns 0 (even when there is an error).
CVE-2021-47204 1 Linux 1 Linux Kernel 2025-01-14 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: net: dpaa2-eth: fix use-after-free in dpaa2_eth_remove Access to netdev after free_netdev() will cause use-after-free bug. Move debug log before free_netdev() call to avoid it.
CVE-2024-26892 1 Linux 1 Linux Kernel 2025-01-14 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7921e: fix use-after-free in free_irq() From commit a304e1b82808 ("[PATCH] Debug shared irqs"), there is a test to make sure the shared irq handler should be able to handle the unexpected event after deregistration. For this case, let's apply MT76_REMOVED flag to indicate the device was removed and do not run into the resource access anymore. BUG: KASAN: use-after-free in mt7921_irq_handler+0xd8/0x100 [mt7921e] Read of size 8 at addr ffff88824a7d3b78 by task rmmod/11115 CPU: 28 PID: 11115 Comm: rmmod Tainted: G W L 5.17.0 #10 Hardware name: Micro-Star International Co., Ltd. MS-7D73/MPG B650I EDGE WIFI (MS-7D73), BIOS 1.81 01/05/2024 Call Trace: <TASK> dump_stack_lvl+0x6f/0xa0 print_address_description.constprop.0+0x1f/0x190 ? mt7921_irq_handler+0xd8/0x100 [mt7921e] ? mt7921_irq_handler+0xd8/0x100 [mt7921e] kasan_report.cold+0x7f/0x11b ? mt7921_irq_handler+0xd8/0x100 [mt7921e] mt7921_irq_handler+0xd8/0x100 [mt7921e] free_irq+0x627/0xaa0 devm_free_irq+0x94/0xd0 ? devm_request_any_context_irq+0x160/0x160 ? kobject_put+0x18d/0x4a0 mt7921_pci_remove+0x153/0x190 [mt7921e] pci_device_remove+0xa2/0x1d0 __device_release_driver+0x346/0x6e0 driver_detach+0x1ef/0x2c0 bus_remove_driver+0xe7/0x2d0 ? __check_object_size+0x57/0x310 pci_unregister_driver+0x26/0x250 __do_sys_delete_module+0x307/0x510 ? free_module+0x6a0/0x6a0 ? fpregs_assert_state_consistent+0x4b/0xb0 ? rcu_read_lock_sched_held+0x10/0x70 ? syscall_enter_from_user_mode+0x20/0x70 ? trace_hardirqs_on+0x1c/0x130 do_syscall_64+0x5c/0x80 ? trace_hardirqs_on_prepare+0x72/0x160 ? do_syscall_64+0x68/0x80 ? trace_hardirqs_on_prepare+0x72/0x160 entry_SYSCALL_64_after_hwframe+0x44/0xae
CVE-2024-26895 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-01-14 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: wifi: wilc1000: prevent use-after-free on vif when cleaning up all interfaces wilc_netdev_cleanup currently triggers a KASAN warning, which can be observed on interface registration error path, or simply by removing the module/unbinding device from driver: echo spi0.1 > /sys/bus/spi/drivers/wilc1000_spi/unbind ================================================================== BUG: KASAN: slab-use-after-free in wilc_netdev_cleanup+0x508/0x5cc Read of size 4 at addr c54d1ce8 by task sh/86 CPU: 0 PID: 86 Comm: sh Not tainted 6.8.0-rc1+ #117 Hardware name: Atmel SAMA5 unwind_backtrace from show_stack+0x18/0x1c show_stack from dump_stack_lvl+0x34/0x58 dump_stack_lvl from print_report+0x154/0x500 print_report from kasan_report+0xac/0xd8 kasan_report from wilc_netdev_cleanup+0x508/0x5cc wilc_netdev_cleanup from wilc_bus_remove+0xc8/0xec wilc_bus_remove from spi_remove+0x8c/0xac spi_remove from device_release_driver_internal+0x434/0x5f8 device_release_driver_internal from unbind_store+0xbc/0x108 unbind_store from kernfs_fop_write_iter+0x398/0x584 kernfs_fop_write_iter from vfs_write+0x728/0xf88 vfs_write from ksys_write+0x110/0x1e4 ksys_write from ret_fast_syscall+0x0/0x1c [...] Allocated by task 1: kasan_save_track+0x30/0x5c __kasan_kmalloc+0x8c/0x94 __kmalloc_node+0x1cc/0x3e4 kvmalloc_node+0x48/0x180 alloc_netdev_mqs+0x68/0x11dc alloc_etherdev_mqs+0x28/0x34 wilc_netdev_ifc_init+0x34/0x8ec wilc_cfg80211_init+0x690/0x910 wilc_bus_probe+0xe0/0x4a0 spi_probe+0x158/0x1b0 really_probe+0x270/0xdf4 __driver_probe_device+0x1dc/0x580 driver_probe_device+0x60/0x140 __driver_attach+0x228/0x5d4 bus_for_each_dev+0x13c/0x1a8 bus_add_driver+0x2a0/0x608 driver_register+0x24c/0x578 do_one_initcall+0x180/0x310 kernel_init_freeable+0x424/0x484 kernel_init+0x20/0x148 ret_from_fork+0x14/0x28 Freed by task 86: kasan_save_track+0x30/0x5c kasan_save_free_info+0x38/0x58 __kasan_slab_free+0xe4/0x140 kfree+0xb0/0x238 device_release+0xc0/0x2a8 kobject_put+0x1d4/0x46c netdev_run_todo+0x8fc/0x11d0 wilc_netdev_cleanup+0x1e4/0x5cc wilc_bus_remove+0xc8/0xec spi_remove+0x8c/0xac device_release_driver_internal+0x434/0x5f8 unbind_store+0xbc/0x108 kernfs_fop_write_iter+0x398/0x584 vfs_write+0x728/0xf88 ksys_write+0x110/0x1e4 ret_fast_syscall+0x0/0x1c [...] David Mosberger-Tan initial investigation [1] showed that this use-after-free is due to netdevice unregistration during vif list traversal. When unregistering a net device, since the needs_free_netdev has been set to true during registration, the netdevice object is also freed, and as a consequence, the corresponding vif object too, since it is attached to it as private netdevice data. The next occurrence of the loop then tries to access freed vif pointer to the list to move forward in the list. Fix this use-after-free thanks to two mechanisms: - navigate in the list with list_for_each_entry_safe, which allows to safely modify the list as we go through each element. For each element, remove it from the list with list_del_rcu - make sure to wait for RCU grace period end after each vif removal to make sure it is safe to free the corresponding vif too (through unregister_netdev) Since we are in a RCU "modifier" path (not a "reader" path), and because such path is expected not to be concurrent to any other modifier (we are using the vif_mutex lock), we do not need to use RCU list API, that's why we can benefit from list_for_each_entry_safe. [1] https://lore.kernel.org/linux-wireless/ab077dbe58b1ea5de0a3b2ca21f275a07af967d2.camel@egauge.net/
CVE-2024-26944 1 Linux 1 Linux Kernel 2025-01-14 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: btrfs: zoned: fix use-after-free in do_zone_finish() Shinichiro reported the following use-after-free triggered by the device replace operation in fstests btrfs/070. BTRFS info (device nullb1): scrub: finished on devid 1 with status: 0 ================================================================== BUG: KASAN: slab-use-after-free in do_zone_finish+0x91a/0xb90 [btrfs] Read of size 8 at addr ffff8881543c8060 by task btrfs-cleaner/3494007 CPU: 0 PID: 3494007 Comm: btrfs-cleaner Tainted: G W 6.8.0-rc5-kts #1 Hardware name: Supermicro Super Server/X11SPi-TF, BIOS 3.3 02/21/2020 Call Trace: <TASK> dump_stack_lvl+0x5b/0x90 print_report+0xcf/0x670 ? __virt_addr_valid+0x200/0x3e0 kasan_report+0xd8/0x110 ? do_zone_finish+0x91a/0xb90 [btrfs] ? do_zone_finish+0x91a/0xb90 [btrfs] do_zone_finish+0x91a/0xb90 [btrfs] btrfs_delete_unused_bgs+0x5e1/0x1750 [btrfs] ? __pfx_btrfs_delete_unused_bgs+0x10/0x10 [btrfs] ? btrfs_put_root+0x2d/0x220 [btrfs] ? btrfs_clean_one_deleted_snapshot+0x299/0x430 [btrfs] cleaner_kthread+0x21e/0x380 [btrfs] ? __pfx_cleaner_kthread+0x10/0x10 [btrfs] kthread+0x2e3/0x3c0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x31/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30 </TASK> Allocated by task 3493983: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 __kasan_kmalloc+0xaa/0xb0 btrfs_alloc_device+0xb3/0x4e0 [btrfs] device_list_add.constprop.0+0x993/0x1630 [btrfs] btrfs_scan_one_device+0x219/0x3d0 [btrfs] btrfs_control_ioctl+0x26e/0x310 [btrfs] __x64_sys_ioctl+0x134/0x1b0 do_syscall_64+0x99/0x190 entry_SYSCALL_64_after_hwframe+0x6e/0x76 Freed by task 3494056: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3f/0x60 poison_slab_object+0x102/0x170 __kasan_slab_free+0x32/0x70 kfree+0x11b/0x320 btrfs_rm_dev_replace_free_srcdev+0xca/0x280 [btrfs] btrfs_dev_replace_finishing+0xd7e/0x14f0 [btrfs] btrfs_dev_replace_by_ioctl+0x1286/0x25a0 [btrfs] btrfs_ioctl+0xb27/0x57d0 [btrfs] __x64_sys_ioctl+0x134/0x1b0 do_syscall_64+0x99/0x190 entry_SYSCALL_64_after_hwframe+0x6e/0x76 The buggy address belongs to the object at ffff8881543c8000 which belongs to the cache kmalloc-1k of size 1024 The buggy address is located 96 bytes inside of freed 1024-byte region [ffff8881543c8000, ffff8881543c8400) The buggy address belongs to the physical page: page:00000000fe2c1285 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x1543c8 head:00000000fe2c1285 order:3 entire_mapcount:0 nr_pages_mapped:0 pincount:0 flags: 0x17ffffc0000840(slab|head|node=0|zone=2|lastcpupid=0x1fffff) page_type: 0xffffffff() raw: 0017ffffc0000840 ffff888100042dc0 ffffea0019e8f200 dead000000000002 raw: 0000000000000000 0000000000100010 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8881543c7f00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff8881543c7f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffff8881543c8000: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff8881543c8080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8881543c8100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb This UAF happens because we're accessing stale zone information of a already removed btrfs_device in do_zone_finish(). The sequence of events is as follows: btrfs_dev_replace_start btrfs_scrub_dev btrfs_dev_replace_finishing btrfs_dev_replace_update_device_in_mapping_tree <-- devices replaced btrfs_rm_dev_replace_free_srcdev btrfs_free_device <-- device freed cleaner_kthread btrfs_delete_unused_bgs btrfs_zone_finish do_zone_finish <-- refers the freed device The reason for this is that we're using a ---truncated---
CVE-2024-27395 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-01-14 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: net: openvswitch: Fix Use-After-Free in ovs_ct_exit Since kfree_rcu, which is called in the hlist_for_each_entry_rcu traversal of ovs_ct_limit_exit, is not part of the RCU read critical section, it is possible that the RCU grace period will pass during the traversal and the key will be free. To prevent this, it should be changed to hlist_for_each_entry_safe.
CVE-2024-27396 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-01-14 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: net: gtp: Fix Use-After-Free in gtp_dellink Since call_rcu, which is called in the hlist_for_each_entry_rcu traversal of gtp_dellink, is not part of the RCU read critical section, it is possible that the RCU grace period will pass during the traversal and the key will be free. To prevent this, it should be changed to hlist_for_each_entry_safe.
CVE-2024-35811 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-01-14 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: Fix use-after-free bug in brcmf_cfg80211_detach This is the candidate patch of CVE-2023-47233 : https://nvd.nist.gov/vuln/detail/CVE-2023-47233 In brcm80211 driver,it starts with the following invoking chain to start init a timeout worker: ->brcmf_usb_probe ->brcmf_usb_probe_cb ->brcmf_attach ->brcmf_bus_started ->brcmf_cfg80211_attach ->wl_init_priv ->brcmf_init_escan ->INIT_WORK(&cfg->escan_timeout_work, brcmf_cfg80211_escan_timeout_worker); If we disconnect the USB by hotplug, it will call brcmf_usb_disconnect to make cleanup. The invoking chain is : brcmf_usb_disconnect ->brcmf_usb_disconnect_cb ->brcmf_detach ->brcmf_cfg80211_detach ->kfree(cfg); While the timeout woker may still be running. This will cause a use-after-free bug on cfg in brcmf_cfg80211_escan_timeout_worker. Fix it by deleting the timer and canceling the worker in brcmf_cfg80211_detach. [arend.vanspriel@broadcom.com: keep timer delete as is and cancel work just before free]
CVE-2021-47207 1 Linux 1 Linux Kernel 2025-01-13 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: ALSA: gus: fix null pointer dereference on pointer block The pointer block return from snd_gf1_dma_next_block could be null, so there is a potential null pointer dereference issue. Fix this by adding a null check before dereference.
CVE-2023-52527 1 Linux 1 Linux Kernel 2025-01-13 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: ipv4, ipv6: Fix handling of transhdrlen in __ip{,6}_append_data() Including the transhdrlen in length is a problem when the packet is partially filled (e.g. something like send(MSG_MORE) happened previously) when appending to an IPv4 or IPv6 packet as we don't want to repeat the transport header or account for it twice. This can happen under some circumstances, such as splicing into an L2TP socket. The symptom observed is a warning in __ip6_append_data(): WARNING: CPU: 1 PID: 5042 at net/ipv6/ip6_output.c:1800 __ip6_append_data.isra.0+0x1be8/0x47f0 net/ipv6/ip6_output.c:1800 that occurs when MSG_SPLICE_PAGES is used to append more data to an already partially occupied skbuff. The warning occurs when 'copy' is larger than the amount of data in the message iterator. This is because the requested length includes the transport header length when it shouldn't. This can be triggered by, for example: sfd = socket(AF_INET6, SOCK_DGRAM, IPPROTO_L2TP); bind(sfd, ...); // ::1 connect(sfd, ...); // ::1 port 7 send(sfd, buffer, 4100, MSG_MORE); sendfile(sfd, dfd, NULL, 1024); Fix this by only adding transhdrlen into the length if the write queue is empty in l2tp_ip6_sendmsg(), analogously to how UDP does things. l2tp_ip_sendmsg() looks like it won't suffer from this problem as it builds the UDP packet itself.
CVE-2021-47325 1 Linux 1 Linux Kernel 2025-01-13 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: iommu/arm-smmu: Fix arm_smmu_device refcount leak in address translation The reference counting issue happens in several exception handling paths of arm_smmu_iova_to_phys_hard(). When those error scenarios occur, the function forgets to decrease the refcount of "smmu" increased by arm_smmu_rpm_get(), causing a refcount leak. Fix this issue by jumping to "out" label when those error scenarios occur.
CVE-2023-52525 1 Linux 1 Linux Kernel 2025-01-13 N/A 7.1 HIGH
In the Linux kernel, the following vulnerability has been resolved: wifi: mwifiex: Fix oob check condition in mwifiex_process_rx_packet Only skip the code path trying to access the rfc1042 headers when the buffer is too small, so the driver can still process packets without rfc1042 headers.
CVE-2024-26709 1 Linux 1 Linux Kernel 2025-01-13 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: powerpc/iommu: Fix the missing iommu_group_put() during platform domain attach The function spapr_tce_platform_iommu_attach_dev() is missing to call iommu_group_put() when the domain is already set. This refcount leak shows up with BUG_ON() during DLPAR remove operation as: KernelBug: Kernel bug in state 'None': kernel BUG at arch/powerpc/platforms/pseries/iommu.c:100! Oops: Exception in kernel mode, sig: 5 [#1] LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=8192 NUMA pSeries <snip> Hardware name: IBM,9080-HEX POWER10 (raw) 0x800200 0xf000006 of:IBM,FW1060.00 (NH1060_016) hv:phyp pSeries NIP: c0000000000ff4d4 LR: c0000000000ff4cc CTR: 0000000000000000 REGS: c0000013aed5f840 TRAP: 0700 Tainted: G I (6.8.0-rc3-autotest-g99bd3cb0d12e) MSR: 8000000000029033 <SF,EE,ME,IR,DR,RI,LE> CR: 44002402 XER: 20040000 CFAR: c000000000a0d170 IRQMASK: 0 ... NIP iommu_reconfig_notifier+0x94/0x200 LR iommu_reconfig_notifier+0x8c/0x200 Call Trace: iommu_reconfig_notifier+0x8c/0x200 (unreliable) notifier_call_chain+0xb8/0x19c blocking_notifier_call_chain+0x64/0x98 of_reconfig_notify+0x44/0xdc of_detach_node+0x78/0xb0 ofdt_write.part.0+0x86c/0xbb8 proc_reg_write+0xf4/0x150 vfs_write+0xf8/0x488 ksys_write+0x84/0x140 system_call_exception+0x138/0x330 system_call_vectored_common+0x15c/0x2ec The patch adds the missing iommu_group_put() call.
CVE-2023-52524 1 Linux 1 Linux Kernel 2025-01-13 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: net: nfc: llcp: Add lock when modifying device list The device list needs its associated lock held when modifying it, or the list could become corrupted, as syzbot discovered.
CVE-2022-48639 1 Linux 1 Linux Kernel 2025-01-13 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: net: sched: fix possible refcount leak in tc_new_tfilter() tfilter_put need to be called to put the refount got by tp->ops->get to avoid possible refcount leak when chain->tmplt_ops != NULL and chain->tmplt_ops != tp->ops.
CVE-2023-52523 1 Linux 1 Linux Kernel 2025-01-13 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: Reject sk_msg egress redirects to non-TCP sockets With a SOCKMAP/SOCKHASH map and an sk_msg program user can steer messages sent from one TCP socket (s1) to actually egress from another TCP socket (s2): tcp_bpf_sendmsg(s1) // = sk_prot->sendmsg tcp_bpf_send_verdict(s1) // __SK_REDIRECT case tcp_bpf_sendmsg_redir(s2) tcp_bpf_push_locked(s2) tcp_bpf_push(s2) tcp_rate_check_app_limited(s2) // expects tcp_sock tcp_sendmsg_locked(s2) // ditto There is a hard-coded assumption in the call-chain, that the egress socket (s2) is a TCP socket. However in commit 122e6c79efe1 ("sock_map: Update sock type checks for UDP") we have enabled redirects to non-TCP sockets. This was done for the sake of BPF sk_skb programs. There was no indention to support sk_msg send-to-egress use case. As a result, attempts to send-to-egress through a non-TCP socket lead to a crash due to invalid downcast from sock to tcp_sock: BUG: kernel NULL pointer dereference, address: 000000000000002f ... Call Trace: <TASK> ? show_regs+0x60/0x70 ? __die+0x1f/0x70 ? page_fault_oops+0x80/0x160 ? do_user_addr_fault+0x2d7/0x800 ? rcu_is_watching+0x11/0x50 ? exc_page_fault+0x70/0x1c0 ? asm_exc_page_fault+0x27/0x30 ? tcp_tso_segs+0x14/0xa0 tcp_write_xmit+0x67/0xce0 __tcp_push_pending_frames+0x32/0xf0 tcp_push+0x107/0x140 tcp_sendmsg_locked+0x99f/0xbb0 tcp_bpf_push+0x19d/0x3a0 tcp_bpf_sendmsg_redir+0x55/0xd0 tcp_bpf_send_verdict+0x407/0x550 tcp_bpf_sendmsg+0x1a1/0x390 inet_sendmsg+0x6a/0x70 sock_sendmsg+0x9d/0xc0 ? sockfd_lookup_light+0x12/0x80 __sys_sendto+0x10e/0x160 ? syscall_enter_from_user_mode+0x20/0x60 ? __this_cpu_preempt_check+0x13/0x20 ? lockdep_hardirqs_on+0x82/0x110 __x64_sys_sendto+0x1f/0x30 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd Reject selecting a non-TCP sockets as redirect target from a BPF sk_msg program to prevent the crash. When attempted, user will receive an EACCES error from send/sendto/sendmsg() syscall.
CVE-2024-56704 1 Linux 1 Linux Kernel 2025-01-13 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: 9p/xen: fix release of IRQ Kernel logs indicate an IRQ was double-freed. Pass correct device ID during IRQ release. [Dominique: remove confusing variable reset to 0]
CVE-2023-52519 1 Linux 1 Linux Kernel 2025-01-13 N/A 7.1 HIGH
In the Linux kernel, the following vulnerability has been resolved: HID: intel-ish-hid: ipc: Disable and reenable ACPI GPE bit The EHL (Elkhart Lake) based platforms provide a OOB (Out of band) service, which allows to wakup device when the system is in S5 (Soft-Off state). This OOB service can be enabled/disabled from BIOS settings. When enabled, the ISH device gets PME wake capability. To enable PME wakeup, driver also needs to enable ACPI GPE bit. On resume, BIOS will clear the wakeup bit. So driver need to re-enable it in resume function to keep the next wakeup capability. But this BIOS clearing of wakeup bit doesn't decrement internal OS GPE reference count, so this reenabling on every resume will cause reference count to overflow. So first disable and reenable ACPI GPE bit using acpi_disable_gpe().
CVE-2023-52517 1 Linux 1 Linux Kernel 2025-01-13 N/A 7.0 HIGH
In the Linux kernel, the following vulnerability has been resolved: spi: sun6i: fix race between DMA RX transfer completion and RX FIFO drain Previously the transfer complete IRQ immediately drained to RX FIFO to read any data remaining in FIFO to the RX buffer. This behaviour is correct when dealing with SPI in interrupt mode. However in DMA mode the transfer complete interrupt still fires as soon as all bytes to be transferred have been stored in the FIFO. At that point data in the FIFO still needs to be picked up by the DMA engine. Thus the drain procedure and DMA engine end up racing to read from RX FIFO, corrupting any data read. Additionally the RX buffer pointer is never adjusted according to DMA progress in DMA mode, thus calling the RX FIFO drain procedure in DMA mode is a bug. Fix corruptions in DMA RX mode by draining RX FIFO only in interrupt mode. Also wait for completion of RX DMA when in DMA mode before returning to ensure all data has been copied to the supplied memory buffer.
CVE-2023-52507 1 Linux 1 Linux Kernel 2025-01-13 N/A 7.1 HIGH
In the Linux kernel, the following vulnerability has been resolved: nfc: nci: assert requested protocol is valid The protocol is used in a bit mask to determine if the protocol is supported. Assert the provided protocol is less than the maximum defined so it doesn't potentially perform a shift-out-of-bounds and provide a clearer error for undefined protocols vs unsupported ones.