Total
9113 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2021-28963 | 2 Debian, Shibboleth | 2 Debian Linux, Service Provider | 2024-11-21 | 5.0 MEDIUM | 5.3 MEDIUM |
Shibboleth Service Provider before 3.2.1 allows content injection because template generation uses attacker-controlled parameters. | |||||
CVE-2021-28957 | 5 Debian, Fedoraproject, Lxml and 2 more | 5 Debian Linux, Fedora, Lxml and 2 more | 2024-11-21 | 4.3 MEDIUM | 6.1 MEDIUM |
An XSS vulnerability was discovered in python-lxml's clean module versions before 4.6.3. When disabling the safe_attrs_only and forms arguments, the Cleaner class does not remove the formaction attribute allowing for JS to bypass the sanitizer. A remote attacker could exploit this flaw to run arbitrary JS code on users who interact with incorrectly sanitized HTML. This issue is patched in lxml 4.6.3. | |||||
CVE-2021-28950 | 3 Debian, Fedoraproject, Linux | 3 Debian Linux, Fedora, Linux Kernel | 2024-11-21 | 2.1 LOW | 5.5 MEDIUM |
An issue was discovered in fs/fuse/fuse_i.h in the Linux kernel before 5.11.8. A "stall on CPU" can occur because a retry loop continually finds the same bad inode, aka CID-775c5033a0d1. | |||||
CVE-2021-28834 | 3 Debian, Fedoraproject, Kramdown Project | 3 Debian Linux, Fedora, Kramdown | 2024-11-21 | 6.8 MEDIUM | 9.8 CRITICAL |
Kramdown before 2.3.1 does not restrict Rouge formatters to the Rouge::Formatters namespace, and thus arbitrary classes can be instantiated. | |||||
CVE-2021-28831 | 3 Busybox, Debian, Fedoraproject | 3 Busybox, Debian Linux, Fedora | 2024-11-21 | 5.0 MEDIUM | 7.5 HIGH |
decompress_gunzip.c in BusyBox through 1.32.1 mishandles the error bit on the huft_build result pointer, with a resultant invalid free or segmentation fault, via malformed gzip data. | |||||
CVE-2021-28715 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2024-11-21 | 2.1 LOW | 6.5 MEDIUM |
Guest can force Linux netback driver to hog large amounts of kernel memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Incoming data packets for a guest in the Linux kernel's netback driver are buffered until the guest is ready to process them. There are some measures taken for avoiding to pile up too much data, but those can be bypassed by the guest: There is a timeout how long the client side of an interface can stop consuming new packets before it is assumed to have stalled, but this timeout is rather long (60 seconds by default). Using a UDP connection on a fast interface can easily accumulate gigabytes of data in that time. (CVE-2021-28715) The timeout could even never trigger if the guest manages to have only one free slot in its RX queue ring page and the next package would require more than one free slot, which may be the case when using GSO, XDP, or software hashing. (CVE-2021-28714) | |||||
CVE-2021-28714 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2024-11-21 | 2.1 LOW | 6.5 MEDIUM |
Guest can force Linux netback driver to hog large amounts of kernel memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Incoming data packets for a guest in the Linux kernel's netback driver are buffered until the guest is ready to process them. There are some measures taken for avoiding to pile up too much data, but those can be bypassed by the guest: There is a timeout how long the client side of an interface can stop consuming new packets before it is assumed to have stalled, but this timeout is rather long (60 seconds by default). Using a UDP connection on a fast interface can easily accumulate gigabytes of data in that time. (CVE-2021-28715) The timeout could even never trigger if the guest manages to have only one free slot in its RX queue ring page and the next package would require more than one free slot, which may be the case when using GSO, XDP, or software hashing. (CVE-2021-28714) | |||||
CVE-2021-28713 | 2 Debian, Xen | 2 Debian Linux, Xen | 2024-11-21 | 2.1 LOW | 6.5 MEDIUM |
Rogue backends can cause DoS of guests via high frequency events T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Xen offers the ability to run PV backends in regular unprivileged guests, typically referred to as "driver domains". Running PV backends in driver domains has one primary security advantage: if a driver domain gets compromised, it doesn't have the privileges to take over the system. However, a malicious driver domain could try to attack other guests via sending events at a high frequency leading to a Denial of Service in the guest due to trying to service interrupts for elongated amounts of time. There are three affected backends: * blkfront patch 1, CVE-2021-28711 * netfront patch 2, CVE-2021-28712 * hvc_xen (console) patch 3, CVE-2021-28713 | |||||
CVE-2021-28712 | 2 Debian, Xen | 2 Debian Linux, Xen | 2024-11-21 | 2.1 LOW | 6.5 MEDIUM |
Rogue backends can cause DoS of guests via high frequency events T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Xen offers the ability to run PV backends in regular unprivileged guests, typically referred to as "driver domains". Running PV backends in driver domains has one primary security advantage: if a driver domain gets compromised, it doesn't have the privileges to take over the system. However, a malicious driver domain could try to attack other guests via sending events at a high frequency leading to a Denial of Service in the guest due to trying to service interrupts for elongated amounts of time. There are three affected backends: * blkfront patch 1, CVE-2021-28711 * netfront patch 2, CVE-2021-28712 * hvc_xen (console) patch 3, CVE-2021-28713 | |||||
CVE-2021-28711 | 2 Debian, Xen | 2 Debian Linux, Xen | 2024-11-21 | 2.1 LOW | 6.5 MEDIUM |
Rogue backends can cause DoS of guests via high frequency events T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Xen offers the ability to run PV backends in regular unprivileged guests, typically referred to as "driver domains". Running PV backends in driver domains has one primary security advantage: if a driver domain gets compromised, it doesn't have the privileges to take over the system. However, a malicious driver domain could try to attack other guests via sending events at a high frequency leading to a Denial of Service in the guest due to trying to service interrupts for elongated amounts of time. There are three affected backends: * blkfront patch 1, CVE-2021-28711 * netfront patch 2, CVE-2021-28712 * hvc_xen (console) patch 3, CVE-2021-28713 | |||||
CVE-2021-28709 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | 6.9 MEDIUM | 7.8 HIGH |
issues with partially successful P2M updates on x86 T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] x86 HVM and PVH guests may be started in populate-on-demand (PoD) mode, to provide a way for them to later easily have more memory assigned. Guests are permitted to control certain P2M aspects of individual pages via hypercalls. These hypercalls may act on ranges of pages specified via page orders (resulting in a power-of-2 number of pages). In some cases the hypervisor carries out the requests by splitting them into smaller chunks. Error handling in certain PoD cases has been insufficient in that in particular partial success of some operations was not properly accounted for. There are two code paths affected - page removal (CVE-2021-28705) and insertion of new pages (CVE-2021-28709). (We provide one patch which combines the fix to both issues.) | |||||
CVE-2021-28708 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | 6.9 MEDIUM | 8.8 HIGH |
PoD operations on misaligned GFNs T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] x86 HVM and PVH guests may be started in populate-on-demand (PoD) mode, to provide a way for them to later easily have more memory assigned. Guests are permitted to control certain P2M aspects of individual pages via hypercalls. These hypercalls may act on ranges of pages specified via page orders (resulting in a power-of-2 number of pages). The implementation of some of these hypercalls for PoD does not enforce the base page frame number to be suitably aligned for the specified order, yet some code involved in PoD handling actually makes such an assumption. These operations are XENMEM_decrease_reservation (CVE-2021-28704) and XENMEM_populate_physmap (CVE-2021-28707), the latter usable only by domains controlling the guest, i.e. a de-privileged qemu or a stub domain. (Patch 1, combining the fix to both these two issues.) In addition handling of XENMEM_decrease_reservation can also trigger a host crash when the specified page order is neither 4k nor 2M nor 1G (CVE-2021-28708, patch 2). | |||||
CVE-2021-28707 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | 6.9 MEDIUM | 8.8 HIGH |
PoD operations on misaligned GFNs T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] x86 HVM and PVH guests may be started in populate-on-demand (PoD) mode, to provide a way for them to later easily have more memory assigned. Guests are permitted to control certain P2M aspects of individual pages via hypercalls. These hypercalls may act on ranges of pages specified via page orders (resulting in a power-of-2 number of pages). The implementation of some of these hypercalls for PoD does not enforce the base page frame number to be suitably aligned for the specified order, yet some code involved in PoD handling actually makes such an assumption. These operations are XENMEM_decrease_reservation (CVE-2021-28704) and XENMEM_populate_physmap (CVE-2021-28707), the latter usable only by domains controlling the guest, i.e. a de-privileged qemu or a stub domain. (Patch 1, combining the fix to both these two issues.) In addition handling of XENMEM_decrease_reservation can also trigger a host crash when the specified page order is neither 4k nor 2M nor 1G (CVE-2021-28708, patch 2). | |||||
CVE-2021-28706 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | 7.8 HIGH | 8.6 HIGH |
guests may exceed their designated memory limit When a guest is permitted to have close to 16TiB of memory, it may be able to issue hypercalls to increase its memory allocation beyond the administrator established limit. This is a result of a calculation done with 32-bit precision, which may overflow. It would then only be the overflowed (and hence small) number which gets compared against the established upper bound. | |||||
CVE-2021-28705 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | 6.9 MEDIUM | 7.8 HIGH |
issues with partially successful P2M updates on x86 T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] x86 HVM and PVH guests may be started in populate-on-demand (PoD) mode, to provide a way for them to later easily have more memory assigned. Guests are permitted to control certain P2M aspects of individual pages via hypercalls. These hypercalls may act on ranges of pages specified via page orders (resulting in a power-of-2 number of pages). In some cases the hypervisor carries out the requests by splitting them into smaller chunks. Error handling in certain PoD cases has been insufficient in that in particular partial success of some operations was not properly accounted for. There are two code paths affected - page removal (CVE-2021-28705) and insertion of new pages (CVE-2021-28709). (We provide one patch which combines the fix to both issues.) | |||||
CVE-2021-28704 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | 6.9 MEDIUM | 8.8 HIGH |
PoD operations on misaligned GFNs T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] x86 HVM and PVH guests may be started in populate-on-demand (PoD) mode, to provide a way for them to later easily have more memory assigned. Guests are permitted to control certain P2M aspects of individual pages via hypercalls. These hypercalls may act on ranges of pages specified via page orders (resulting in a power-of-2 number of pages). The implementation of some of these hypercalls for PoD does not enforce the base page frame number to be suitably aligned for the specified order, yet some code involved in PoD handling actually makes such an assumption. These operations are XENMEM_decrease_reservation (CVE-2021-28704) and XENMEM_populate_physmap (CVE-2021-28707), the latter usable only by domains controlling the guest, i.e. a de-privileged qemu or a stub domain. (Patch 1, combining the fix to both these two issues.) In addition handling of XENMEM_decrease_reservation can also trigger a host crash when the specified page order is neither 4k nor 2M nor 1G (CVE-2021-28708, patch 2). | |||||
CVE-2021-28702 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | 4.6 MEDIUM | 7.6 HIGH |
PCI devices with RMRRs not deassigned correctly Certain PCI devices in a system might be assigned Reserved Memory Regions (specified via Reserved Memory Region Reporting, "RMRR"). These are typically used for platform tasks such as legacy USB emulation. If such a device is passed through to a guest, then on guest shutdown the device is not properly deassigned. The IOMMU configuration for these devices which are not properly deassigned ends up pointing to a freed data structure, including the IO Pagetables. Subsequent DMA or interrupts from the device will have unpredictable behaviour, ranging from IOMMU faults to memory corruption. | |||||
CVE-2021-28701 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | 4.4 MEDIUM | 7.8 HIGH |
Another race in XENMAPSPACE_grant_table handling Guests are permitted access to certain Xen-owned pages of memory. The majority of such pages remain allocated / associated with a guest for its entire lifetime. Grant table v2 status pages, however, are de-allocated when a guest switches (back) from v2 to v1. Freeing such pages requires that the hypervisor enforce that no parallel request can result in the addition of a mapping of such a page to a guest. That enforcement was missing, allowing guests to retain access to pages that were freed and perhaps re-used for other purposes. Unfortunately, when XSA-379 was being prepared, this similar issue was not noticed. | |||||
CVE-2021-28700 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | 6.8 MEDIUM | 4.9 MEDIUM |
xen/arm: No memory limit for dom0less domUs The dom0less feature allows an administrator to create multiple unprivileged domains directly from Xen. Unfortunately, the memory limit from them is not set. This allow a domain to allocate memory beyond what an administrator originally configured. | |||||
CVE-2021-28699 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | 4.9 MEDIUM | 5.5 MEDIUM |
inadequate grant-v2 status frames array bounds check The v2 grant table interface separates grant attributes from grant status. That is, when operating in this mode, a guest has two tables. As a result, guests also need to be able to retrieve the addresses that the new status tracking table can be accessed through. For 32-bit guests on x86, translation of requests has to occur because the interface structure layouts commonly differ between 32- and 64-bit. The translation of the request to obtain the frame numbers of the grant status table involves translating the resulting array of frame numbers. Since the space used to carry out the translation is limited, the translation layer tells the core function the capacity of the array within translation space. Unfortunately the core function then only enforces array bounds to be below 8 times the specified value, and would write past the available space if enough frame numbers needed storing. |