Vulnerabilities (CVE)

Total 304790 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2025-7835 2025-07-25 N/A 4.3 MEDIUM
The iThoughts Advanced Code Editor plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 1.2.10. This is due to missing or incorrect nonce validation on the 'ithoughts_ace_update_options' AJAX action. This makes it possible for unauthenticated attackers to update plugin settings via a forged request granted they can trick a site administrator into performing an action such as clicking on a link.
CVE-2025-38382 2025-07-25 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix iteration of extrefs during log replay At __inode_add_ref() when processing extrefs, if we jump into the next label we have an undefined value of victim_name.len, since we haven't initialized it before we did the goto. This results in an invalid memory access in the next iteration of the loop since victim_name.len was not initialized to the length of the name of the current extref. Fix this by initializing victim_name.len with the current extref's name length.
CVE-2025-8107 2025-07-25 N/A 6.3 MEDIUM
In OceanBase's Oracle tenant mode, a malicious user with specific privileges can achieve privilege escalation to SYS-level access by executing carefully crafted commands. This vulnerability only affects OceanBase tenants in Oracle mode. Tenants in MySQL mode are unaffected.
CVE-2025-3669 2025-07-25 N/A 6.4 MEDIUM
The Supreme Addons for Beaver Builder plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's auto_qrcodesabb shortcode in all versions up to, and including, 1.0.9 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page.
CVE-2025-32429 2025-07-25 N/A N/A
XWiki Platform is a generic wiki platform offering runtime services for applications built on top of it. In versions 9.4-rc-1 through 16.10.5 and 17.0.0-rc-1 through 17.2.2, it's possible for anyone to inject SQL using the parameter sort of the getdeleteddocuments.vm. It's injected as is as an ORDER BY value. This is fixed in versions 16.10.6 and 17.3.0-rc-1.
CVE-2025-38395 2025-07-25 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: regulator: gpio: Fix the out-of-bounds access to drvdata::gpiods drvdata::gpiods is supposed to hold an array of 'gpio_desc' pointers. But the memory is allocated for only one pointer. This will lead to out-of-bounds access later in the code if 'config::ngpios' is > 1. So fix the code to allocate enough memory to hold 'config::ngpios' of GPIO descriptors. While at it, also move the check for memory allocation failure to be below the allocation to make it more readable.
CVE-2025-38362 2025-07-25 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add null pointer check for get_first_active_display() The function mod_hdcp_hdcp1_enable_encryption() calls the function get_first_active_display(), but does not check its return value. The return value is a null pointer if the display list is empty. This will lead to a null pointer dereference in mod_hdcp_hdcp2_enable_encryption(). Add a null pointer check for get_first_active_display() and return MOD_HDCP_STATUS_DISPLAY_NOT_FOUND if the function return null.
CVE-2025-7742 2025-07-25 N/A N/A
An authentication vulnerability exists in the LG Innotek camera model LNV5110R firmware that allows a malicious actor to upload an HTTP POST request to the devices non-volatile storage. This action may result in remote code execution that allows an attacker to run arbitrary commands on the target device at the administrator privilege level.
CVE-2025-38403 2025-07-25 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: vsock/vmci: Clear the vmci transport packet properly when initializing it In vmci_transport_packet_init memset the vmci_transport_packet before populating the fields to avoid any uninitialised data being left in the structure.
CVE-2025-54566 2025-07-25 N/A 4.2 MEDIUM
hw/pci/pcie_sriov.c in QEMU through 10.0.3 has a migration state inconsistency, a related issue to CVE-2024-26327.
CVE-2025-38372 2025-07-25 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: RDMA/mlx5: Fix unsafe xarray access in implicit ODP handling __xa_store() and __xa_erase() were used without holding the proper lock, which led to a lockdep warning due to unsafe RCU usage. This patch replaces them with xa_store() and xa_erase(), which perform the necessary locking internally. ============================= WARNING: suspicious RCPU usage 6.14.0-rc7_for_upstream_debug_2025_03_18_15_01 #1 Not tainted ----------------------------- ./include/linux/xarray.h:1211 suspicious rcu_dereference_protected() usage! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 1 3 locks held by kworker/u136:0/219: at: process_one_work+0xbe4/0x15f0 process_one_work+0x75c/0x15f0 pagefault_mr+0x9a5/0x1390 [mlx5_ib] stack backtrace: CPU: 14 UID: 0 PID: 219 Comm: kworker/u136:0 Not tainted 6.14.0-rc7_for_upstream_debug_2025_03_18_15_01 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 Workqueue: mlx5_ib_page_fault mlx5_ib_eqe_pf_action [mlx5_ib] Call Trace: dump_stack_lvl+0xa8/0xc0 lockdep_rcu_suspicious+0x1e6/0x260 xas_create+0xb8a/0xee0 xas_store+0x73/0x14c0 __xa_store+0x13c/0x220 ? xa_store_range+0x390/0x390 ? spin_bug+0x1d0/0x1d0 pagefault_mr+0xcb5/0x1390 [mlx5_ib] ? _raw_spin_unlock+0x1f/0x30 mlx5_ib_eqe_pf_action+0x3be/0x2620 [mlx5_ib] ? lockdep_hardirqs_on_prepare+0x400/0x400 ? mlx5_ib_invalidate_range+0xcb0/0xcb0 [mlx5_ib] process_one_work+0x7db/0x15f0 ? pwq_dec_nr_in_flight+0xda0/0xda0 ? assign_work+0x168/0x240 worker_thread+0x57d/0xcd0 ? rescuer_thread+0xc40/0xc40 kthread+0x3b3/0x800 ? kthread_is_per_cpu+0xb0/0xb0 ? lock_downgrade+0x680/0x680 ? do_raw_spin_lock+0x12d/0x270 ? spin_bug+0x1d0/0x1d0 ? finish_task_switch.isra.0+0x284/0x9e0 ? lockdep_hardirqs_on_prepare+0x284/0x400 ? kthread_is_per_cpu+0xb0/0xb0 ret_from_fork+0x2d/0x70 ? kthread_is_per_cpu+0xb0/0xb0 ret_from_fork_asm+0x11/0x20
CVE-2025-6998 2025-07-25 N/A N/A
ReDoS in strip_whitespaces() function in cps/string_helper.py in Calibre Web and Autocaliweb allows unauthenticated remote attackers to cause denial of service via specially crafted username parameter that triggers catastrophic backtracking during login. This issue affects Calibre Web: 0.6.24 (Nicolette); Autocaliweb: from 0.7.0 before 0.7.1.
CVE-2025-6387 2025-07-25 N/A 6.4 MEDIUM
The WP Get The Table plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the ‘url’ parameter in all versions up to, and including, 1.5 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page.
CVE-2025-38388 2025-07-25 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: firmware: arm_ffa: Replace mutex with rwlock to avoid sleep in atomic context The current use of a mutex to protect the notifier hashtable accesses can lead to issues in the atomic context. It results in the below kernel warnings: | BUG: sleeping function called from invalid context at kernel/locking/mutex.c:258 | in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 9, name: kworker/0:0 | preempt_count: 1, expected: 0 | RCU nest depth: 0, expected: 0 | CPU: 0 UID: 0 PID: 9 Comm: kworker/0:0 Not tainted 6.14.0 #4 | Workqueue: ffa_pcpu_irq_notification notif_pcpu_irq_work_fn | Call trace: | show_stack+0x18/0x24 (C) | dump_stack_lvl+0x78/0x90 | dump_stack+0x18/0x24 | __might_resched+0x114/0x170 | __might_sleep+0x48/0x98 | mutex_lock+0x24/0x80 | handle_notif_callbacks+0x54/0xe0 | notif_get_and_handle+0x40/0x88 | generic_exec_single+0x80/0xc0 | smp_call_function_single+0xfc/0x1a0 | notif_pcpu_irq_work_fn+0x2c/0x38 | process_one_work+0x14c/0x2b4 | worker_thread+0x2e4/0x3e0 | kthread+0x13c/0x210 | ret_from_fork+0x10/0x20 To address this, replace the mutex with an rwlock to protect the notifier hashtable accesses. This ensures that read-side locking does not sleep and multiple readers can acquire the lock concurrently, avoiding unnecessary contention and potential deadlocks. Writer access remains exclusive, preserving correctness. This change resolves warnings from lockdep about potential sleep in atomic context.
CVE-2025-8159 2025-07-25 9.0 HIGH 8.8 HIGH
A vulnerability was found in D-Link DIR-513 1.0. It has been rated as critical. This issue affects the function formLanguageChange of the file /goform/formLanguageChange of the component HTTP POST Request Handler. The manipulation of the argument curTime leads to stack-based buffer overflow. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used. This vulnerability only affects products that are no longer supported by the maintainer.
CVE-2025-38405 2025-07-25 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: nvmet: fix memory leak of bio integrity If nvmet receives commands with metadata there is a continuous memory leak of kmalloc-128 slab or more precisely bio->bi_integrity. Since commit bf4c89fc8797 ("block: don't call bio_uninit from bio_endio") each user of bio_init has to use bio_uninit as well. Otherwise the bio integrity is not getting free. Nvmet uses bio_init for inline bios. Uninit the inline bio to complete deallocation of integrity in bio.
CVE-2025-38397 2025-07-25 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: nvme-multipath: fix suspicious RCU usage warning When I run the NVME over TCP test in virtme-ng, I get the following "suspicious RCU usage" warning in nvme_mpath_add_sysfs_link(): ''' [ 5.024557][ T44] nvmet: Created nvm controller 1 for subsystem nqn.2025-06.org.nvmexpress.mptcp for NQN nqn.2014-08.org.nvmexpress:uuid:f7f6b5e0-ff97-4894-98ac-c85309e0bc77. [ 5.027401][ T183] nvme nvme0: creating 2 I/O queues. [ 5.029017][ T183] nvme nvme0: mapped 2/0/0 default/read/poll queues. [ 5.032587][ T183] nvme nvme0: new ctrl: NQN "nqn.2025-06.org.nvmexpress.mptcp", addr 127.0.0.1:4420, hostnqn: nqn.2014-08.org.nvmexpress:uuid:f7f6b5e0-ff97-4894-98ac-c85309e0bc77 [ 5.042214][ T25] [ 5.042440][ T25] ============================= [ 5.042579][ T25] WARNING: suspicious RCU usage [ 5.042705][ T25] 6.16.0-rc3+ #23 Not tainted [ 5.042812][ T25] ----------------------------- [ 5.042934][ T25] drivers/nvme/host/multipath.c:1203 RCU-list traversed in non-reader section!! [ 5.043111][ T25] [ 5.043111][ T25] other info that might help us debug this: [ 5.043111][ T25] [ 5.043341][ T25] [ 5.043341][ T25] rcu_scheduler_active = 2, debug_locks = 1 [ 5.043502][ T25] 3 locks held by kworker/u9:0/25: [ 5.043615][ T25] #0: ffff888008730948 ((wq_completion)async){+.+.}-{0:0}, at: process_one_work+0x7ed/0x1350 [ 5.043830][ T25] #1: ffffc900001afd40 ((work_completion)(&entry->work)){+.+.}-{0:0}, at: process_one_work+0xcf3/0x1350 [ 5.044084][ T25] #2: ffff888013ee0020 (&head->srcu){.+.+}-{0:0}, at: nvme_mpath_add_sysfs_link.part.0+0xb4/0x3a0 [ 5.044300][ T25] [ 5.044300][ T25] stack backtrace: [ 5.044439][ T25] CPU: 0 UID: 0 PID: 25 Comm: kworker/u9:0 Not tainted 6.16.0-rc3+ #23 PREEMPT(full) [ 5.044441][ T25] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 [ 5.044442][ T25] Workqueue: async async_run_entry_fn [ 5.044445][ T25] Call Trace: [ 5.044446][ T25] <TASK> [ 5.044449][ T25] dump_stack_lvl+0x6f/0xb0 [ 5.044453][ T25] lockdep_rcu_suspicious.cold+0x4f/0xb1 [ 5.044457][ T25] nvme_mpath_add_sysfs_link.part.0+0x2fb/0x3a0 [ 5.044459][ T25] ? queue_work_on+0x90/0xf0 [ 5.044461][ T25] ? lockdep_hardirqs_on+0x78/0x110 [ 5.044466][ T25] nvme_mpath_set_live+0x1e9/0x4f0 [ 5.044470][ T25] nvme_mpath_add_disk+0x240/0x2f0 [ 5.044472][ T25] ? __pfx_nvme_mpath_add_disk+0x10/0x10 [ 5.044475][ T25] ? add_disk_fwnode+0x361/0x580 [ 5.044480][ T25] nvme_alloc_ns+0x81c/0x17c0 [ 5.044483][ T25] ? kasan_quarantine_put+0x104/0x240 [ 5.044487][ T25] ? __pfx_nvme_alloc_ns+0x10/0x10 [ 5.044495][ T25] ? __pfx_nvme_find_get_ns+0x10/0x10 [ 5.044496][ T25] ? rcu_read_lock_any_held+0x45/0xa0 [ 5.044498][ T25] ? validate_chain+0x232/0x4f0 [ 5.044503][ T25] nvme_scan_ns+0x4c8/0x810 [ 5.044506][ T25] ? __pfx_nvme_scan_ns+0x10/0x10 [ 5.044508][ T25] ? find_held_lock+0x2b/0x80 [ 5.044512][ T25] ? ktime_get+0x16d/0x220 [ 5.044517][ T25] ? kvm_clock_get_cycles+0x18/0x30 [ 5.044520][ T25] ? __pfx_nvme_scan_ns_async+0x10/0x10 [ 5.044522][ T25] async_run_entry_fn+0x97/0x560 [ 5.044523][ T25] ? rcu_is_watching+0x12/0xc0 [ 5.044526][ T25] process_one_work+0xd3c/0x1350 [ 5.044532][ T25] ? __pfx_process_one_work+0x10/0x10 [ 5.044536][ T25] ? assign_work+0x16c/0x240 [ 5.044539][ T25] worker_thread+0x4da/0xd50 [ 5.044545][ T25] ? __pfx_worker_thread+0x10/0x10 [ 5.044546][ T25] kthread+0x356/0x5c0 [ 5.044548][ T25] ? __pfx_kthread+0x10/0x10 [ 5.044549][ T25] ? ret_from_fork+0x1b/0x2e0 [ 5.044552][ T25] ? __lock_release.isra.0+0x5d/0x180 [ 5.044553][ T25] ? ret_from_fork+0x1b/0x2e0 [ 5.044555][ T25] ? rcu_is_watching+0x12/0xc0 [ 5.044557][ T25] ? __pfx_kthread+0x10/0x10 [ 5.04 ---truncated---
CVE-2025-8009 2025-07-25 N/A 4.9 MEDIUM
The Security Ninja – WordPress Security Plugin & Firewall plugin for WordPress is vulnerable to Arbitrary File Read in all versions up to, and including, 5.242 via the 'get_file_source' function. This makes it possible for authenticated attackers, with Administrator-level access and above, to extract sensitive data, including the contents of any file on the server.
CVE-2025-38392 2025-07-25 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: idpf: convert control queue mutex to a spinlock With VIRTCHNL2_CAP_MACFILTER enabled, the following warning is generated on module load: [ 324.701677] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:578 [ 324.701684] in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 1582, name: NetworkManager [ 324.701689] preempt_count: 201, expected: 0 [ 324.701693] RCU nest depth: 0, expected: 0 [ 324.701697] 2 locks held by NetworkManager/1582: [ 324.701702] #0: ffffffff9f7be770 (rtnl_mutex){....}-{3:3}, at: rtnl_newlink+0x791/0x21e0 [ 324.701730] #1: ff1100216c380368 (_xmit_ETHER){....}-{2:2}, at: __dev_open+0x3f0/0x870 [ 324.701749] Preemption disabled at: [ 324.701752] [<ffffffff9cd23b9d>] __dev_open+0x3dd/0x870 [ 324.701765] CPU: 30 UID: 0 PID: 1582 Comm: NetworkManager Not tainted 6.15.0-rc5+ #2 PREEMPT(voluntary) [ 324.701771] Hardware name: Intel Corporation M50FCP2SBSTD/M50FCP2SBSTD, BIOS SE5C741.86B.01.01.0001.2211140926 11/14/2022 [ 324.701774] Call Trace: [ 324.701777] <TASK> [ 324.701779] dump_stack_lvl+0x5d/0x80 [ 324.701788] ? __dev_open+0x3dd/0x870 [ 324.701793] __might_resched.cold+0x1ef/0x23d <..> [ 324.701818] __mutex_lock+0x113/0x1b80 <..> [ 324.701917] idpf_ctlq_clean_sq+0xad/0x4b0 [idpf] [ 324.701935] ? kasan_save_track+0x14/0x30 [ 324.701941] idpf_mb_clean+0x143/0x380 [idpf] <..> [ 324.701991] idpf_send_mb_msg+0x111/0x720 [idpf] [ 324.702009] idpf_vc_xn_exec+0x4cc/0x990 [idpf] [ 324.702021] ? rcu_is_watching+0x12/0xc0 [ 324.702035] idpf_add_del_mac_filters+0x3ed/0xb50 [idpf] <..> [ 324.702122] __hw_addr_sync_dev+0x1cf/0x300 [ 324.702126] ? find_held_lock+0x32/0x90 [ 324.702134] idpf_set_rx_mode+0x317/0x390 [idpf] [ 324.702152] __dev_open+0x3f8/0x870 [ 324.702159] ? __pfx___dev_open+0x10/0x10 [ 324.702174] __dev_change_flags+0x443/0x650 <..> [ 324.702208] netif_change_flags+0x80/0x160 [ 324.702218] do_setlink.isra.0+0x16a0/0x3960 <..> [ 324.702349] rtnl_newlink+0x12fd/0x21e0 The sequence is as follows: rtnl_newlink()-> __dev_change_flags()-> __dev_open()-> dev_set_rx_mode() - > # disables BH and grabs "dev->addr_list_lock" idpf_set_rx_mode() -> # proceed only if VIRTCHNL2_CAP_MACFILTER is ON __dev_uc_sync() -> idpf_add_mac_filter -> idpf_add_del_mac_filters -> idpf_send_mb_msg() -> idpf_mb_clean() -> idpf_ctlq_clean_sq() # mutex_lock(cq_lock) Fix by converting cq_lock to a spinlock. All operations under the new lock are safe except freeing the DMA memory, which may use vunmap(). Fix by requesting a contiguous physical memory for the DMA mapping.
CVE-2025-38425 2025-07-25 N/A N/A
In the Linux kernel, the following vulnerability has been resolved: i2c: tegra: check msg length in SMBUS block read For SMBUS block read, do not continue to read if the message length passed from the device is '0' or greater than the maximum allowed bytes.