Vulnerabilities (CVE)

Filtered by vendor Linux Subscribe
Total 10223 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2023-52561 1 Linux 1 Linux Kernel 2025-04-08 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: arm64: dts: qcom: sdm845-db845c: Mark cont splash memory region as reserved Adding a reserved memory region for the framebuffer memory (the splash memory region set up by the bootloader). It fixes a kernel panic (arm-smmu: Unhandled context fault at this particular memory region) reported on DB845c running v5.10.y.
CVE-2023-52566 1 Linux 1 Linux Kernel 2025-04-08 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix potential use after free in nilfs_gccache_submit_read_data() In nilfs_gccache_submit_read_data(), brelse(bh) is called to drop the reference count of bh when the call to nilfs_dat_translate() fails. If the reference count hits 0 and its owner page gets unlocked, bh may be freed. However, bh->b_page is dereferenced to put the page after that, which may result in a use-after-free bug. This patch moves the release operation after unlocking and putting the page. NOTE: The function in question is only called in GC, and in combination with current userland tools, address translation using DAT does not occur in that function, so the code path that causes this issue will not be executed. However, it is possible to run that code path by intentionally modifying the userland GC library or by calling the GC ioctl directly. [konishi.ryusuke@gmail.com: NOTE added to the commit log]
CVE-2023-52571 1 Linux 1 Linux Kernel 2025-04-08 N/A 7.1 HIGH
In the Linux kernel, the following vulnerability has been resolved: power: supply: rk817: Fix node refcount leak Dan Carpenter reports that the Smatch static checker warning has found that there is another refcount leak in the probe function. While of_node_put() was added in one of the return paths, it should in fact be added for ALL return paths that return an error and at driver removal time.
CVE-2023-52576 1 Linux 1 Linux Kernel 2025-04-08 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: x86/mm, kexec, ima: Use memblock_free_late() from ima_free_kexec_buffer() The code calling ima_free_kexec_buffer() runs long after the memblock allocator has already been torn down, potentially resulting in a use after free in memblock_isolate_range(). With KASAN or KFENCE, this use after free will result in a BUG from the idle task, and a subsequent kernel panic. Switch ima_free_kexec_buffer() over to memblock_free_late() to avoid that bug.
CVE-2021-47094 1 Linux 1 Linux Kernel 2025-04-08 N/A 7.1 HIGH
In the Linux kernel, the following vulnerability has been resolved: KVM: x86/mmu: Don't advance iterator after restart due to yielding After dropping mmu_lock in the TDP MMU, restart the iterator during tdp_iter_next() and do not advance the iterator. Advancing the iterator results in skipping the top-level SPTE and all its children, which is fatal if any of the skipped SPTEs were not visited before yielding. When zapping all SPTEs, i.e. when min_level == root_level, restarting the iter and then invoking tdp_iter_next() is always fatal if the current gfn has as a valid SPTE, as advancing the iterator results in try_step_side() skipping the current gfn, which wasn't visited before yielding. Sprinkle WARNs on iter->yielded being true in various helpers that are often used in conjunction with yielding, and tag the helper with __must_check to reduce the probabily of improper usage. Failing to zap a top-level SPTE manifests in one of two ways. If a valid SPTE is skipped by both kvm_tdp_mmu_zap_all() and kvm_tdp_mmu_put_root(), the shadow page will be leaked and KVM will WARN accordingly. WARNING: CPU: 1 PID: 3509 at arch/x86/kvm/mmu/tdp_mmu.c:46 [kvm] RIP: 0010:kvm_mmu_uninit_tdp_mmu+0x3e/0x50 [kvm] Call Trace: <TASK> kvm_arch_destroy_vm+0x130/0x1b0 [kvm] kvm_destroy_vm+0x162/0x2a0 [kvm] kvm_vcpu_release+0x34/0x60 [kvm] __fput+0x82/0x240 task_work_run+0x5c/0x90 do_exit+0x364/0xa10 ? futex_unqueue+0x38/0x60 do_group_exit+0x33/0xa0 get_signal+0x155/0x850 arch_do_signal_or_restart+0xed/0x750 exit_to_user_mode_prepare+0xc5/0x120 syscall_exit_to_user_mode+0x1d/0x40 do_syscall_64+0x48/0xc0 entry_SYSCALL_64_after_hwframe+0x44/0xae If kvm_tdp_mmu_zap_all() skips a gfn/SPTE but that SPTE is then zapped by kvm_tdp_mmu_put_root(), KVM triggers a use-after-free in the form of marking a struct page as dirty/accessed after it has been put back on the free list. This directly triggers a WARN due to encountering a page with page_count() == 0, but it can also lead to data corruption and additional errors in the kernel. WARNING: CPU: 7 PID: 1995658 at arch/x86/kvm/../../../virt/kvm/kvm_main.c:171 RIP: 0010:kvm_is_zone_device_pfn.part.0+0x9e/0xd0 [kvm] Call Trace: <TASK> kvm_set_pfn_dirty+0x120/0x1d0 [kvm] __handle_changed_spte+0x92e/0xca0 [kvm] __handle_changed_spte+0x63c/0xca0 [kvm] __handle_changed_spte+0x63c/0xca0 [kvm] __handle_changed_spte+0x63c/0xca0 [kvm] zap_gfn_range+0x549/0x620 [kvm] kvm_tdp_mmu_put_root+0x1b6/0x270 [kvm] mmu_free_root_page+0x219/0x2c0 [kvm] kvm_mmu_free_roots+0x1b4/0x4e0 [kvm] kvm_mmu_unload+0x1c/0xa0 [kvm] kvm_arch_destroy_vm+0x1f2/0x5c0 [kvm] kvm_put_kvm+0x3b1/0x8b0 [kvm] kvm_vcpu_release+0x4e/0x70 [kvm] __fput+0x1f7/0x8c0 task_work_run+0xf8/0x1a0 do_exit+0x97b/0x2230 do_group_exit+0xda/0x2a0 get_signal+0x3be/0x1e50 arch_do_signal_or_restart+0x244/0x17f0 exit_to_user_mode_prepare+0xcb/0x120 syscall_exit_to_user_mode+0x1d/0x40 do_syscall_64+0x4d/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae Note, the underlying bug existed even before commit 1af4a96025b3 ("KVM: x86/mmu: Yield in TDU MMU iter even if no SPTES changed") moved calls to tdp_mmu_iter_cond_resched() to the beginning of loops, as KVM could still incorrectly advance past a top-level entry when yielding on a lower-level entry. But with respect to leaking shadow pages, the bug was introduced by yielding before processing the current gfn. Alternatively, tdp_mmu_iter_cond_resched() could simply fall through, or callers could jump to their "retry" label. The downside of that approach is that tdp_mmu_iter_cond_resched() _must_ be called before anything else in the loop, and there's no easy way to enfornce that requirement. Ideally, KVM would handling the cond_resched() fully within the iterator macro (the code is actually quite clean) and avoid this entire class of bugs, but that is extremely difficult do wh ---truncated---
CVE-2021-47096 1 Linux 1 Linux Kernel 2025-04-08 N/A 4.0 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: ALSA: rawmidi - fix the uninitalized user_pversion The user_pversion was uninitialized for the user space file structure in the open function, because the file private structure use kmalloc for the allocation. The kernel ALSA sequencer code clears the file structure, so no additional fixes are required. BugLink: https://github.com/alsa-project/alsa-lib/issues/178
CVE-2021-47099 1 Linux 1 Linux Kernel 2025-04-08 N/A 6.0 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: veth: ensure skb entering GRO are not cloned. After commit d3256efd8e8b ("veth: allow enabling NAPI even without XDP"), if GRO is enabled on a veth device and TSO is disabled on the peer device, TCP skbs will go through the NAPI callback. If there is no XDP program attached, the veth code does not perform any share check, and shared/cloned skbs could enter the GRO engine. Ignat reported a BUG triggered later-on due to the above condition: [ 53.970529][ C1] kernel BUG at net/core/skbuff.c:3574! [ 53.981755][ C1] invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI [ 53.982634][ C1] CPU: 1 PID: 19 Comm: ksoftirqd/1 Not tainted 5.16.0-rc5+ #25 [ 53.982634][ C1] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 [ 53.982634][ C1] RIP: 0010:skb_shift+0x13ef/0x23b0 [ 53.982634][ C1] Code: ea 03 0f b6 04 02 48 89 fa 83 e2 07 38 d0 7f 08 84 c0 0f 85 41 0c 00 00 41 80 7f 02 00 4d 8d b5 d0 00 00 00 0f 85 74 f5 ff ff <0f> 0b 4d 8d 77 20 be 04 00 00 00 4c 89 44 24 78 4c 89 f7 4c 89 8c [ 53.982634][ C1] RSP: 0018:ffff8881008f7008 EFLAGS: 00010246 [ 53.982634][ C1] RAX: 0000000000000000 RBX: ffff8881180b4c80 RCX: 0000000000000000 [ 53.982634][ C1] RDX: 0000000000000002 RSI: ffff8881180b4d3c RDI: ffff88810bc9cac2 [ 53.982634][ C1] RBP: ffff8881008f70b8 R08: ffff8881180b4cf4 R09: ffff8881180b4cf0 [ 53.982634][ C1] R10: ffffed1022999e5c R11: 0000000000000002 R12: 0000000000000590 [ 53.982634][ C1] R13: ffff88810f940c80 R14: ffff88810f940d50 R15: ffff88810bc9cac0 [ 53.982634][ C1] FS: 0000000000000000(0000) GS:ffff888235880000(0000) knlGS:0000000000000000 [ 53.982634][ C1] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 53.982634][ C1] CR2: 00007ff5f9b86680 CR3: 0000000108ce8004 CR4: 0000000000170ee0 [ 53.982634][ C1] Call Trace: [ 53.982634][ C1] <TASK> [ 53.982634][ C1] tcp_sacktag_walk+0xaba/0x18e0 [ 53.982634][ C1] tcp_sacktag_write_queue+0xe7b/0x3460 [ 53.982634][ C1] tcp_ack+0x2666/0x54b0 [ 53.982634][ C1] tcp_rcv_established+0x4d9/0x20f0 [ 53.982634][ C1] tcp_v4_do_rcv+0x551/0x810 [ 53.982634][ C1] tcp_v4_rcv+0x22ed/0x2ed0 [ 53.982634][ C1] ip_protocol_deliver_rcu+0x96/0xaf0 [ 53.982634][ C1] ip_local_deliver_finish+0x1e0/0x2f0 [ 53.982634][ C1] ip_sublist_rcv_finish+0x211/0x440 [ 53.982634][ C1] ip_list_rcv_finish.constprop.0+0x424/0x660 [ 53.982634][ C1] ip_list_rcv+0x2c8/0x410 [ 53.982634][ C1] __netif_receive_skb_list_core+0x65c/0x910 [ 53.982634][ C1] netif_receive_skb_list_internal+0x5f9/0xcb0 [ 53.982634][ C1] napi_complete_done+0x188/0x6e0 [ 53.982634][ C1] gro_cell_poll+0x10c/0x1d0 [ 53.982634][ C1] __napi_poll+0xa1/0x530 [ 53.982634][ C1] net_rx_action+0x567/0x1270 [ 53.982634][ C1] __do_softirq+0x28a/0x9ba [ 53.982634][ C1] run_ksoftirqd+0x32/0x60 [ 53.982634][ C1] smpboot_thread_fn+0x559/0x8c0 [ 53.982634][ C1] kthread+0x3b9/0x490 [ 53.982634][ C1] ret_from_fork+0x22/0x30 [ 53.982634][ C1] </TASK> Address the issue by skipping the GRO stage for shared or cloned skbs. To reduce the chance of OoO, try to unclone the skbs before giving up. v1 -> v2: - use avoid skb_copy and fallback to netif_receive_skb - Eric
CVE-2021-47060 1 Linux 1 Linux Kernel 2025-04-08 N/A 6.0 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: KVM: Stop looking for coalesced MMIO zones if the bus is destroyed Abort the walk of coalesced MMIO zones if kvm_io_bus_unregister_dev() fails to allocate memory for the new instance of the bus. If it can't instantiate a new bus, unregister_dev() destroys all devices _except_ the target device. But, it doesn't tell the caller that it obliterated the bus and invoked the destructor for all devices that were on the bus. In the coalesced MMIO case, this can result in a deleted list entry dereference due to attempting to continue iterating on coalesced_zones after future entries (in the walk) have been deleted. Opportunistically add curly braces to the for-loop, which encompasses many lines but sneaks by without braces due to the guts being a single if statement.
CVE-2022-4842 1 Linux 1 Linux Kernel 2025-04-08 N/A 5.5 MEDIUM
A flaw NULL Pointer Dereference in the Linux kernel NTFS3 driver function attr_punch_hole() was found. A local user could use this flaw to crash the system.
CVE-2024-35823 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-04-07 N/A 5.3 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: vt: fix unicode buffer corruption when deleting characters This is the same issue that was fixed for the VGA text buffer in commit 39cdb68c64d8 ("vt: fix memory overlapping when deleting chars in the buffer"). The cure is also the same i.e. replace memcpy() with memmove() due to the overlaping buffers.
CVE-2024-35829 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-04-07 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: drm/lima: fix a memleak in lima_heap_alloc When lima_vm_map_bo fails, the resources need to be deallocated, or there will be memleaks.
CVE-2024-35833 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-04-07 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: dmaengine: fsl-qdma: Fix a memory leak related to the queue command DMA This dma_alloc_coherent() is undone neither in the remove function, nor in the error handling path of fsl_qdma_probe(). Switch to the managed version to fix both issues.
CVE-2024-35835 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-04-07 N/A 5.3 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: fix a double-free in arfs_create_groups When `in` allocated by kvzalloc fails, arfs_create_groups will free ft->g and return an error. However, arfs_create_table, the only caller of arfs_create_groups, will hold this error and call to mlx5e_destroy_flow_table, in which the ft->g will be freed again.
CVE-2023-52674 1 Linux 1 Linux Kernel 2025-04-07 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: ALSA: scarlett2: Add clamp() in scarlett2_mixer_ctl_put() Ensure the value passed to scarlett2_mixer_ctl_put() is between 0 and SCARLETT2_MIXER_MAX_VALUE so we don't attempt to access outside scarlett2_mixer_values[].
CVE-2023-52684 1 Linux 1 Linux Kernel 2025-04-07 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: firmware: qcom: qseecom: fix memory leaks in error paths Fix instances of returning error codes directly instead of jumping to the relevant labels where memory allocated for the SCM calls would be freed.
CVE-2023-52696 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-04-07 N/A 7.5 HIGH
In the Linux kernel, the following vulnerability has been resolved: powerpc/powernv: Add a null pointer check in opal_powercap_init() kasprintf() returns a pointer to dynamically allocated memory which can be NULL upon failure.
CVE-2024-35843 1 Linux 1 Linux Kernel 2025-04-07 N/A 6.8 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: iommu/vt-d: Use device rbtree in iopf reporting path The existing I/O page fault handler currently locates the PCI device by calling pci_get_domain_bus_and_slot(). This function searches the list of all PCI devices until the desired device is found. To improve lookup efficiency, replace it with device_rbtree_find() to search the device within the probed device rbtree. The I/O page fault is initiated by the device, which does not have any synchronization mechanism with the software to ensure that the device stays in the probed device tree. Theoretically, a device could be released by the IOMMU subsystem after device_rbtree_find() and before iopf_get_dev_fault_param(), which would cause a use-after-free problem. Add a mutex to synchronize the I/O page fault reporting path and the IOMMU release device path. This lock doesn't introduce any performance overhead, as the conflict between I/O page fault reporting and device releasing is very rare.
CVE-2024-35845 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-04-07 N/A 9.1 CRITICAL
In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: dbg-tlv: ensure NUL termination The iwl_fw_ini_debug_info_tlv is used as a string, so we must ensure the string is terminated correctly before using it.
CVE-2024-35853 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-04-07 N/A 6.4 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix memory leak during rehash The rehash delayed work migrates filters from one region to another. This is done by iterating over all chunks (all the filters with the same priority) in the region and in each chunk iterating over all the filters. If the migration fails, the code tries to migrate the filters back to the old region. However, the rollback itself can also fail in which case another migration will be erroneously performed. Besides the fact that this ping pong is not a very good idea, it also creates a problem. Each virtual chunk references two chunks: The currently used one ('vchunk->chunk') and a backup ('vchunk->chunk2'). During migration the first holds the chunk we want to migrate filters to and the second holds the chunk we are migrating filters from. The code currently assumes - but does not verify - that the backup chunk does not exist (NULL) if the currently used chunk does not reference the target region. This assumption breaks when we are trying to rollback a rollback, resulting in the backup chunk being overwritten and leaked [1]. Fix by not rolling back a failed rollback and add a warning to avoid future cases. [1] WARNING: CPU: 5 PID: 1063 at lib/parman.c:291 parman_destroy+0x17/0x20 Modules linked in: CPU: 5 PID: 1063 Comm: kworker/5:11 Tainted: G W 6.9.0-rc2-custom-00784-gc6a05c468a0b #14 Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019 Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work RIP: 0010:parman_destroy+0x17/0x20 [...] Call Trace: <TASK> mlxsw_sp_acl_atcam_region_fini+0x19/0x60 mlxsw_sp_acl_tcam_region_destroy+0x49/0xf0 mlxsw_sp_acl_tcam_vregion_rehash_work+0x1f1/0x470 process_one_work+0x151/0x370 worker_thread+0x2cb/0x3e0 kthread+0xd0/0x100 ret_from_fork+0x34/0x50 ret_from_fork_asm+0x1a/0x30 </TASK>
CVE-2024-35854 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-04-07 N/A 8.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix possible use-after-free during rehash The rehash delayed work migrates filters from one region to another according to the number of available credits. The migrated from region is destroyed at the end of the work if the number of credits is non-negative as the assumption is that this is indicative of migration being complete. This assumption is incorrect as a non-negative number of credits can also be the result of a failed migration. The destruction of a region that still has filters referencing it can result in a use-after-free [1]. Fix by not destroying the region if migration failed. [1] BUG: KASAN: slab-use-after-free in mlxsw_sp_acl_ctcam_region_entry_remove+0x21d/0x230 Read of size 8 at addr ffff8881735319e8 by task kworker/0:31/3858 CPU: 0 PID: 3858 Comm: kworker/0:31 Tainted: G W 6.9.0-rc2-custom-00782-gf2275c2157d8 #5 Hardware name: Mellanox Technologies Ltd. MSN3700/VMOD0005, BIOS 5.11 01/06/2019 Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work Call Trace: <TASK> dump_stack_lvl+0xc6/0x120 print_report+0xce/0x670 kasan_report+0xd7/0x110 mlxsw_sp_acl_ctcam_region_entry_remove+0x21d/0x230 mlxsw_sp_acl_ctcam_entry_del+0x2e/0x70 mlxsw_sp_acl_atcam_entry_del+0x81/0x210 mlxsw_sp_acl_tcam_vchunk_migrate_all+0x3cd/0xb50 mlxsw_sp_acl_tcam_vregion_rehash_work+0x157/0x1300 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30 </TASK> Allocated by task 174: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 __kasan_kmalloc+0x8f/0xa0 __kmalloc+0x19c/0x360 mlxsw_sp_acl_tcam_region_create+0xdf/0x9c0 mlxsw_sp_acl_tcam_vregion_rehash_work+0x954/0x1300 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30 Freed by task 7: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 poison_slab_object+0x102/0x170 __kasan_slab_free+0x14/0x30 kfree+0xc1/0x290 mlxsw_sp_acl_tcam_region_destroy+0x272/0x310 mlxsw_sp_acl_tcam_vregion_rehash_work+0x731/0x1300 process_one_work+0x8eb/0x19b0 worker_thread+0x6c9/0xf70 kthread+0x2c9/0x3b0 ret_from_fork+0x4d/0x80 ret_from_fork_asm+0x1a/0x30