Filtered by vendor Linux
Subscribe
Total
12249 CVE
| CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
|---|---|---|---|---|---|
| CVE-2024-38636 | 1 Linux | 1 Linux Kernel | 2025-10-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: f2fs: multidev: fix to recognize valid zero block address As reported by Yi Zhang in mailing list [1], kernel warning was catched during zbd/010 test as below: ./check zbd/010 zbd/010 (test gap zone support with F2FS) [failed] runtime ... 3.752s something found in dmesg: [ 4378.146781] run blktests zbd/010 at 2024-02-18 11:31:13 [ 4378.192349] null_blk: module loaded [ 4378.209860] null_blk: disk nullb0 created [ 4378.413285] scsi_debug:sdebug_driver_probe: scsi_debug: trim poll_queues to 0. poll_q/nr_hw = (0/1) [ 4378.422334] scsi host15: scsi_debug: version 0191 [20210520] dev_size_mb=1024, opts=0x0, submit_queues=1, statistics=0 [ 4378.434922] scsi 15:0:0:0: Direct-Access-ZBC Linux scsi_debug 0191 PQ: 0 ANSI: 7 [ 4378.443343] scsi 15:0:0:0: Power-on or device reset occurred [ 4378.449371] sd 15:0:0:0: Attached scsi generic sg5 type 20 [ 4378.449418] sd 15:0:0:0: [sdf] Host-managed zoned block device ... (See '/mnt/tests/gitlab.com/api/v4/projects/19168116/repository/archive.zip/storage/blktests/blk/blktests/results/nodev/zbd/010.dmesg' WARNING: CPU: 22 PID: 44011 at fs/iomap/iter.c:51 CPU: 22 PID: 44011 Comm: fio Not tainted 6.8.0-rc3+ #1 RIP: 0010:iomap_iter+0x32b/0x350 Call Trace: <TASK> __iomap_dio_rw+0x1df/0x830 f2fs_file_read_iter+0x156/0x3d0 [f2fs] aio_read+0x138/0x210 io_submit_one+0x188/0x8c0 __x64_sys_io_submit+0x8c/0x1a0 do_syscall_64+0x86/0x170 entry_SYSCALL_64_after_hwframe+0x6e/0x76 Shinichiro Kawasaki helps to analyse this issue and proposes a potential fixing patch in [2]. Quoted from reply of Shinichiro Kawasaki: "I confirmed that the trigger commit is dbf8e63f48af as Yi reported. I took a look in the commit, but it looks fine to me. So I thought the cause is not in the commit diff. I found the WARN is printed when the f2fs is set up with multiple devices, and read requests are mapped to the very first block of the second device in the direct read path. In this case, f2fs_map_blocks() and f2fs_map_blocks_cached() modify map->m_pblk as the physical block address from each block device. It becomes zero when it is mapped to the first block of the device. However, f2fs_iomap_begin() assumes that map->m_pblk is the physical block address of the whole f2fs, across the all block devices. It compares map->m_pblk against NULL_ADDR == 0, then go into the unexpected branch and sets the invalid iomap->length. The WARN catches the invalid iomap->length. This WARN is printed even for non-zoned block devices, by following steps. - Create two (non-zoned) null_blk devices memory backed with 128MB size each: nullb0 and nullb1. # mkfs.f2fs /dev/nullb0 -c /dev/nullb1 # mount -t f2fs /dev/nullb0 "${mount_dir}" # dd if=/dev/zero of="${mount_dir}/test.dat" bs=1M count=192 # dd if="${mount_dir}/test.dat" of=/dev/null bs=1M count=192 iflag=direct ..." So, the root cause of this issue is: when multi-devices feature is on, f2fs_map_blocks() may return zero blkaddr in non-primary device, which is a verified valid block address, however, f2fs_iomap_begin() treats it as an invalid block address, and then it triggers the warning in iomap framework code. Finally, as discussed, we decide to use a more simple and direct way that checking (map.m_flags & F2FS_MAP_MAPPED) condition instead of (map.m_pblk != NULL_ADDR) to fix this issue. Thanks a lot for the effort of Yi Zhang and Shinichiro Kawasaki on this issue. [1] https://lore.kernel.org/linux-f2fs-devel/CAHj4cs-kfojYC9i0G73PRkYzcxCTex=-vugRFeP40g_URGvnfQ@mail.gmail.com/ [2] https://lore.kernel.org/linux-f2fs-devel/gngdj77k4picagsfdtiaa7gpgnup6fsgwzsltx6milmhegmjff@iax2n4wvrqye/ | |||||
| CVE-2024-38629 | 1 Linux | 1 Linux Kernel | 2025-10-03 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: dmaengine: idxd: Avoid unnecessary destruction of file_ida file_ida is allocated during cdev open and is freed accordingly during cdev release. This sequence is guaranteed by driver file operations. Therefore, there is no need to destroy an already empty file_ida when the WQ cdev is removed. Worse, ida_free() in cdev release may happen after destruction of file_ida per WQ cdev. This can lead to accessing an id in file_ida after it has been destroyed, resulting in a kernel panic. Remove ida_destroy(&file_ida) to address these issues. | |||||
| CVE-2024-38626 | 1 Linux | 1 Linux Kernel | 2025-10-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: fuse: clear FR_SENT when re-adding requests into pending list The following warning was reported by lee bruce: ------------[ cut here ]------------ WARNING: CPU: 0 PID: 8264 at fs/fuse/dev.c:300 fuse_request_end+0x685/0x7e0 fs/fuse/dev.c:300 Modules linked in: CPU: 0 PID: 8264 Comm: ab2 Not tainted 6.9.0-rc7 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) RIP: 0010:fuse_request_end+0x685/0x7e0 fs/fuse/dev.c:300 ...... Call Trace: <TASK> fuse_dev_do_read.constprop.0+0xd36/0x1dd0 fs/fuse/dev.c:1334 fuse_dev_read+0x166/0x200 fs/fuse/dev.c:1367 call_read_iter include/linux/fs.h:2104 [inline] new_sync_read fs/read_write.c:395 [inline] vfs_read+0x85b/0xba0 fs/read_write.c:476 ksys_read+0x12f/0x260 fs/read_write.c:619 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xce/0x260 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f ...... </TASK> The warning is due to the FUSE_NOTIFY_RESEND notify sent by the write() syscall in the reproducer program and it happens as follows: (1) calls fuse_dev_read() to read the INIT request The read succeeds. During the read, bit FR_SENT will be set on the request. (2) calls fuse_dev_write() to send an USE_NOTIFY_RESEND notify The resend notify will resend all processing requests, so the INIT request is moved from processing list to pending list again. (3) calls fuse_dev_read() with an invalid output address fuse_dev_read() will try to copy the same INIT request to the output address, but it will fail due to the invalid address, so the INIT request is ended and triggers the warning in fuse_request_end(). Fix it by clearing FR_SENT when re-adding requests into pending list. | |||||
| CVE-2022-48786 | 1 Linux | 1 Linux Kernel | 2025-10-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: vsock: remove vsock from connected table when connect is interrupted by a signal vsock_connect() expects that the socket could already be in the TCP_ESTABLISHED state when the connecting task wakes up with a signal pending. If this happens the socket will be in the connected table, and it is not removed when the socket state is reset. In this situation it's common for the process to retry connect(), and if the connection is successful the socket will be added to the connected table a second time, corrupting the list. Prevent this by calling vsock_remove_connected() if a signal is received while waiting for a connection. This is harmless if the socket is not in the connected table, and if it is in the table then removing it will prevent list corruption from a double add. Note for backporting: this patch requires d5afa82c977e ("vsock: correct removal of socket from the list"), which is in all current stable trees except 4.9.y. | |||||
| CVE-2025-23247 | 3 Linux, Microsoft, Nvidia | 3 Linux Kernel, Windows, Cuda Toolkit | 2025-10-03 | N/A | 4.4 MEDIUM |
| NVIDIA CUDA Toolkit for all platforms contains a vulnerability in the cuobjdump binary, where a failure to check the length of a buffer could allow a user to cause the tool to crash or execute arbitrary code by passing in a malformed ELF file. A successful exploit of this vulnerability might lead to arbitrary code execution. | |||||
| CVE-2022-48785 | 1 Linux | 1 Linux Kernel | 2025-10-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: ipv6: mcast: use rcu-safe version of ipv6_get_lladdr() Some time ago 8965779d2c0e ("ipv6,mcast: always hold idev->lock before mca_lock") switched ipv6_get_lladdr() to __ipv6_get_lladdr(), which is rcu-unsafe version. That was OK, because idev->lock was held for these codepaths. In 88e2ca308094 ("mld: convert ifmcaddr6 to RCU") these external locks were removed, so we probably need to restore the original rcu-safe call. Otherwise, we occasionally get a machine crashed/stalled with the following in dmesg: [ 3405.966610][T230589] general protection fault, probably for non-canonical address 0xdead00000000008c: 0000 [#1] SMP NOPTI [ 3405.982083][T230589] CPU: 44 PID: 230589 Comm: kworker/44:3 Tainted: G O 5.15.19-cloudflare-2022.2.1 #1 [ 3405.998061][T230589] Hardware name: SUPA-COOL-SERV [ 3406.009552][T230589] Workqueue: mld mld_ifc_work [ 3406.017224][T230589] RIP: 0010:__ipv6_get_lladdr+0x34/0x60 [ 3406.025780][T230589] Code: 57 10 48 83 c7 08 48 89 e5 48 39 d7 74 3e 48 8d 82 38 ff ff ff eb 13 48 8b 90 d0 00 00 00 48 8d 82 38 ff ff ff 48 39 d7 74 22 <66> 83 78 32 20 77 1b 75 e4 89 ca 23 50 2c 75 dd 48 8b 50 08 48 8b [ 3406.055748][T230589] RSP: 0018:ffff94e4b3fc3d10 EFLAGS: 00010202 [ 3406.065617][T230589] RAX: dead00000000005a RBX: ffff94e4b3fc3d30 RCX: 0000000000000040 [ 3406.077477][T230589] RDX: dead000000000122 RSI: ffff94e4b3fc3d30 RDI: ffff8c3a31431008 [ 3406.089389][T230589] RBP: ffff94e4b3fc3d10 R08: 0000000000000000 R09: 0000000000000000 [ 3406.101445][T230589] R10: ffff8c3a31430000 R11: 000000000000000b R12: ffff8c2c37887100 [ 3406.113553][T230589] R13: ffff8c3a39537000 R14: 00000000000005dc R15: ffff8c3a31431000 [ 3406.125730][T230589] FS: 0000000000000000(0000) GS:ffff8c3b9fc80000(0000) knlGS:0000000000000000 [ 3406.138992][T230589] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 3406.149895][T230589] CR2: 00007f0dfea1db60 CR3: 000000387b5f2000 CR4: 0000000000350ee0 [ 3406.162421][T230589] Call Trace: [ 3406.170235][T230589] <TASK> [ 3406.177736][T230589] mld_newpack+0xfe/0x1a0 [ 3406.186686][T230589] add_grhead+0x87/0xa0 [ 3406.195498][T230589] add_grec+0x485/0x4e0 [ 3406.204310][T230589] ? newidle_balance+0x126/0x3f0 [ 3406.214024][T230589] mld_ifc_work+0x15d/0x450 [ 3406.223279][T230589] process_one_work+0x1e6/0x380 [ 3406.232982][T230589] worker_thread+0x50/0x3a0 [ 3406.242371][T230589] ? rescuer_thread+0x360/0x360 [ 3406.252175][T230589] kthread+0x127/0x150 [ 3406.261197][T230589] ? set_kthread_struct+0x40/0x40 [ 3406.271287][T230589] ret_from_fork+0x22/0x30 [ 3406.280812][T230589] </TASK> [ 3406.288937][T230589] Modules linked in: ... [last unloaded: kheaders] [ 3406.476714][T230589] ---[ end trace 3525a7655f2f3b9e ]--- | |||||
| CVE-2022-48780 | 1 Linux | 1 Linux Kernel | 2025-10-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: net/smc: Avoid overwriting the copies of clcsock callback functions The callback functions of clcsock will be saved and replaced during the fallback. But if the fallback happens more than once, then the copies of these callback functions will be overwritten incorrectly, resulting in a loop call issue: clcsk->sk_error_report |- smc_fback_error_report() <------------------------------| |- smc_fback_forward_wakeup() | (loop) |- clcsock_callback() (incorrectly overwritten) | |- smc->clcsk_error_report() ------------------| So this patch fixes the issue by saving these function pointers only once in the fallback and avoiding overwriting. | |||||
| CVE-2021-47623 | 1 Linux | 1 Linux Kernel | 2025-10-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: powerpc/fixmap: Fix VM debug warning on unmap Unmapping a fixmap entry is done by calling __set_fixmap() with FIXMAP_PAGE_CLEAR as flags. Today, powerpc __set_fixmap() calls map_kernel_page(). map_kernel_page() is not happy when called a second time for the same page. WARNING: CPU: 0 PID: 1 at arch/powerpc/mm/pgtable.c:194 set_pte_at+0xc/0x1e8 CPU: 0 PID: 1 Comm: swapper Not tainted 5.16.0-rc3-s3k-dev-01993-g350ff07feb7d-dirty #682 NIP: c0017cd4 LR: c00187f0 CTR: 00000010 REGS: e1011d50 TRAP: 0700 Not tainted (5.16.0-rc3-s3k-dev-01993-g350ff07feb7d-dirty) MSR: 00029032 <EE,ME,IR,DR,RI> CR: 42000208 XER: 00000000 GPR00: c0165fec e1011e10 c14c0000 c0ee2550 ff800000 c0f3d000 00000000 c001686c GPR08: 00001000 b00045a9 00000001 c0f58460 c0f50000 00000000 c0007e10 00000000 GPR16: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 GPR24: 00000000 00000000 c0ee2550 00000000 c0f57000 00000ff8 00000000 ff800000 NIP [c0017cd4] set_pte_at+0xc/0x1e8 LR [c00187f0] map_kernel_page+0x9c/0x100 Call Trace: [e1011e10] [c0736c68] vsnprintf+0x358/0x6c8 (unreliable) [e1011e30] [c0165fec] __set_fixmap+0x30/0x44 [e1011e40] [c0c13bdc] early_iounmap+0x11c/0x170 [e1011e70] [c0c06cb0] ioremap_legacy_serial_console+0x88/0xc0 [e1011e90] [c0c03634] do_one_initcall+0x80/0x178 [e1011ef0] [c0c0385c] kernel_init_freeable+0xb4/0x250 [e1011f20] [c0007e34] kernel_init+0x24/0x140 [e1011f30] [c0016268] ret_from_kernel_thread+0x5c/0x64 Instruction dump: 7fe3fb78 48019689 80010014 7c630034 83e1000c 5463d97e 7c0803a6 38210010 4e800020 81250000 712a0001 41820008 <0fe00000> 9421ffe0 93e1001c 48000030 Implement unmap_kernel_page() which clears an existing pte. | |||||
| CVE-2024-40923 | 1 Linux | 1 Linux Kernel | 2025-10-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: vmxnet3: disable rx data ring on dma allocation failure When vmxnet3_rq_create() fails to allocate memory for rq->data_ring.base, the subsequent call to vmxnet3_rq_destroy_all_rxdataring does not reset rq->data_ring.desc_size for the data ring that failed, which presumably causes the hypervisor to reference it on packet reception. To fix this bug, rq->data_ring.desc_size needs to be set to 0 to tell the hypervisor to disable this feature. [ 95.436876] kernel BUG at net/core/skbuff.c:207! [ 95.439074] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI [ 95.440411] CPU: 7 PID: 0 Comm: swapper/7 Not tainted 6.9.3-dirty #1 [ 95.441558] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 12/12/2018 [ 95.443481] RIP: 0010:skb_panic+0x4d/0x4f [ 95.444404] Code: 4f 70 50 8b 87 c0 00 00 00 50 8b 87 bc 00 00 00 50 ff b7 d0 00 00 00 4c 8b 8f c8 00 00 00 48 c7 c7 68 e8 be 9f e8 63 58 f9 ff <0f> 0b 48 8b 14 24 48 c7 c1 d0 73 65 9f e8 a1 ff ff ff 48 8b 14 24 [ 95.447684] RSP: 0018:ffffa13340274dd0 EFLAGS: 00010246 [ 95.448762] RAX: 0000000000000089 RBX: ffff8fbbc72b02d0 RCX: 000000000000083f [ 95.450148] RDX: 0000000000000000 RSI: 00000000000000f6 RDI: 000000000000083f [ 95.451520] RBP: 000000000000002d R08: 0000000000000000 R09: ffffa13340274c60 [ 95.452886] R10: ffffffffa04ed468 R11: 0000000000000002 R12: 0000000000000000 [ 95.454293] R13: ffff8fbbdab3c2d0 R14: ffff8fbbdbd829e0 R15: ffff8fbbdbd809e0 [ 95.455682] FS: 0000000000000000(0000) GS:ffff8fbeefd80000(0000) knlGS:0000000000000000 [ 95.457178] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 95.458340] CR2: 00007fd0d1f650c8 CR3: 0000000115f28000 CR4: 00000000000406f0 [ 95.459791] Call Trace: [ 95.460515] <IRQ> [ 95.461180] ? __die_body.cold+0x19/0x27 [ 95.462150] ? die+0x2e/0x50 [ 95.462976] ? do_trap+0xca/0x110 [ 95.463973] ? do_error_trap+0x6a/0x90 [ 95.464966] ? skb_panic+0x4d/0x4f [ 95.465901] ? exc_invalid_op+0x50/0x70 [ 95.466849] ? skb_panic+0x4d/0x4f [ 95.467718] ? asm_exc_invalid_op+0x1a/0x20 [ 95.468758] ? skb_panic+0x4d/0x4f [ 95.469655] skb_put.cold+0x10/0x10 [ 95.470573] vmxnet3_rq_rx_complete+0x862/0x11e0 [vmxnet3] [ 95.471853] vmxnet3_poll_rx_only+0x36/0xb0 [vmxnet3] [ 95.473185] __napi_poll+0x2b/0x160 [ 95.474145] net_rx_action+0x2c6/0x3b0 [ 95.475115] handle_softirqs+0xe7/0x2a0 [ 95.476122] __irq_exit_rcu+0x97/0xb0 [ 95.477109] common_interrupt+0x85/0xa0 [ 95.478102] </IRQ> [ 95.478846] <TASK> [ 95.479603] asm_common_interrupt+0x26/0x40 [ 95.480657] RIP: 0010:pv_native_safe_halt+0xf/0x20 [ 95.481801] Code: 22 d7 e9 54 87 01 00 0f 1f 40 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa eb 07 0f 00 2d 93 ba 3b 00 fb f4 <e9> 2c 87 01 00 66 66 2e 0f 1f 84 00 00 00 00 00 90 90 90 90 90 90 [ 95.485563] RSP: 0018:ffffa133400ffe58 EFLAGS: 00000246 [ 95.486882] RAX: 0000000000004000 RBX: ffff8fbbc1d14064 RCX: 0000000000000000 [ 95.488477] RDX: ffff8fbeefd80000 RSI: ffff8fbbc1d14000 RDI: 0000000000000001 [ 95.490067] RBP: ffff8fbbc1d14064 R08: ffffffffa0652260 R09: 00000000000010d3 [ 95.491683] R10: 0000000000000018 R11: ffff8fbeefdb4764 R12: ffffffffa0652260 [ 95.493389] R13: ffffffffa06522e0 R14: 0000000000000001 R15: 0000000000000000 [ 95.495035] acpi_safe_halt+0x14/0x20 [ 95.496127] acpi_idle_do_entry+0x2f/0x50 [ 95.497221] acpi_idle_enter+0x7f/0xd0 [ 95.498272] cpuidle_enter_state+0x81/0x420 [ 95.499375] cpuidle_enter+0x2d/0x40 [ 95.500400] do_idle+0x1e5/0x240 [ 95.501385] cpu_startup_entry+0x29/0x30 [ 95.502422] start_secondary+0x11c/0x140 [ 95.503454] common_startup_64+0x13e/0x141 [ 95.504466] </TASK> [ 95.505197] Modules linked in: nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ip ---truncated--- | |||||
| CVE-2024-40922 | 1 Linux | 1 Linux Kernel | 2025-10-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: io_uring/rsrc: don't lock while !TASK_RUNNING There is a report of io_rsrc_ref_quiesce() locking a mutex while not TASK_RUNNING, which is due to forgetting restoring the state back after io_run_task_work_sig() and attempts to break out of the waiting loop. do not call blocking ops when !TASK_RUNNING; state=1 set at [<ffffffff815d2494>] prepare_to_wait+0xa4/0x380 kernel/sched/wait.c:237 WARNING: CPU: 2 PID: 397056 at kernel/sched/core.c:10099 __might_sleep+0x114/0x160 kernel/sched/core.c:10099 RIP: 0010:__might_sleep+0x114/0x160 kernel/sched/core.c:10099 Call Trace: <TASK> __mutex_lock_common kernel/locking/mutex.c:585 [inline] __mutex_lock+0xb4/0x940 kernel/locking/mutex.c:752 io_rsrc_ref_quiesce+0x590/0x940 io_uring/rsrc.c:253 io_sqe_buffers_unregister+0xa2/0x340 io_uring/rsrc.c:799 __io_uring_register io_uring/register.c:424 [inline] __do_sys_io_uring_register+0x5b9/0x2400 io_uring/register.c:613 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xd8/0x270 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x6f/0x77 | |||||
| CVE-2024-40917 | 1 Linux | 1 Linux Kernel | 2025-10-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: memblock: make memblock_set_node() also warn about use of MAX_NUMNODES On an (old) x86 system with SRAT just covering space above 4Gb: ACPI: SRAT: Node 0 PXM 0 [mem 0x100000000-0xfffffffff] hotplug the commit referenced below leads to this NUMA configuration no longer being refused by a CONFIG_NUMA=y kernel (previously NUMA: nodes only cover 6144MB of your 8185MB e820 RAM. Not used. No NUMA configuration found Faking a node at [mem 0x0000000000000000-0x000000027fffffff] was seen in the log directly after the message quoted above), because of memblock_validate_numa_coverage() checking for NUMA_NO_NODE (only). This in turn led to memblock_alloc_range_nid()'s warning about MAX_NUMNODES triggering, followed by a NULL deref in memmap_init() when trying to access node 64's (NODE_SHIFT=6) node data. To compensate said change, make memblock_set_node() warn on and adjust a passed in value of MAX_NUMNODES, just like various other functions already do. | |||||
| CVE-2022-48814 | 1 Linux | 1 Linux Kernel | 2025-10-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: net: dsa: seville: register the mdiobus under devres As explained in commits: 74b6d7d13307 ("net: dsa: realtek: register the MDIO bus under devres") 5135e96a3dd2 ("net: dsa: don't allocate the slave_mii_bus using devres") mdiobus_free() will panic when called from devm_mdiobus_free() <- devres_release_all() <- __device_release_driver(), and that mdiobus was not previously unregistered. The Seville VSC9959 switch is a platform device, so the initial set of constraints that I thought would cause this (I2C or SPI buses which call ->remove on ->shutdown) do not apply. But there is one more which applies here. If the DSA master itself is on a bus that calls ->remove from ->shutdown (like dpaa2-eth, which is on the fsl-mc bus), there is a device link between the switch and the DSA master, and device_links_unbind_consumers() will unbind the seville switch driver on shutdown. So the same treatment must be applied to all DSA switch drivers, which is: either use devres for both the mdiobus allocation and registration, or don't use devres at all. The seville driver has a code structure that could accommodate both the mdiobus_unregister and mdiobus_free calls, but it has an external dependency upon mscc_miim_setup() from mdio-mscc-miim.c, which calls devm_mdiobus_alloc_size() on its behalf. So rather than restructuring that, and exporting yet one more symbol mscc_miim_teardown(), let's work with devres and replace of_mdiobus_register with the devres variant. When we use all-devres, we can ensure that devres doesn't free a still-registered bus (it either runs both callbacks, or none). | |||||
| CVE-2022-48813 | 1 Linux | 1 Linux Kernel | 2025-10-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: net: dsa: felix: don't use devres for mdiobus As explained in commits: 74b6d7d13307 ("net: dsa: realtek: register the MDIO bus under devres") 5135e96a3dd2 ("net: dsa: don't allocate the slave_mii_bus using devres") mdiobus_free() will panic when called from devm_mdiobus_free() <- devres_release_all() <- __device_release_driver(), and that mdiobus was not previously unregistered. The Felix VSC9959 switch is a PCI device, so the initial set of constraints that I thought would cause this (I2C or SPI buses which call ->remove on ->shutdown) do not apply. But there is one more which applies here. If the DSA master itself is on a bus that calls ->remove from ->shutdown (like dpaa2-eth, which is on the fsl-mc bus), there is a device link between the switch and the DSA master, and device_links_unbind_consumers() will unbind the felix switch driver on shutdown. So the same treatment must be applied to all DSA switch drivers, which is: either use devres for both the mdiobus allocation and registration, or don't use devres at all. The felix driver has the code structure in place for orderly mdiobus removal, so just replace devm_mdiobus_alloc_size() with the non-devres variant, and add manual free where necessary, to ensure that we don't let devres free a still-registered bus. | |||||
| CVE-2022-48812 | 1 Linux | 1 Linux Kernel | 2025-10-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: net: dsa: lantiq_gswip: don't use devres for mdiobus As explained in commits: 74b6d7d13307 ("net: dsa: realtek: register the MDIO bus under devres") 5135e96a3dd2 ("net: dsa: don't allocate the slave_mii_bus using devres") mdiobus_free() will panic when called from devm_mdiobus_free() <- devres_release_all() <- __device_release_driver(), and that mdiobus was not previously unregistered. The GSWIP switch is a platform device, so the initial set of constraints that I thought would cause this (I2C or SPI buses which call ->remove on ->shutdown) do not apply. But there is one more which applies here. If the DSA master itself is on a bus that calls ->remove from ->shutdown (like dpaa2-eth, which is on the fsl-mc bus), there is a device link between the switch and the DSA master, and device_links_unbind_consumers() will unbind the GSWIP switch driver on shutdown. So the same treatment must be applied to all DSA switch drivers, which is: either use devres for both the mdiobus allocation and registration, or don't use devres at all. The gswip driver has the code structure in place for orderly mdiobus removal, so just replace devm_mdiobus_alloc() with the non-devres variant, and add manual free where necessary, to ensure that we don't let devres free a still-registered bus. | |||||
| CVE-2022-48810 | 1 Linux | 1 Linux Kernel | 2025-10-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: ipmr,ip6mr: acquire RTNL before calling ip[6]mr_free_table() on failure path ip[6]mr_free_table() can only be called under RTNL lock. RTNL: assertion failed at net/core/dev.c (10367) WARNING: CPU: 1 PID: 5890 at net/core/dev.c:10367 unregister_netdevice_many+0x1246/0x1850 net/core/dev.c:10367 Modules linked in: CPU: 1 PID: 5890 Comm: syz-executor.2 Not tainted 5.16.0-syzkaller-11627-g422ee58dc0ef #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:unregister_netdevice_many+0x1246/0x1850 net/core/dev.c:10367 Code: 0f 85 9b ee ff ff e8 69 07 4b fa ba 7f 28 00 00 48 c7 c6 00 90 ae 8a 48 c7 c7 40 90 ae 8a c6 05 6d b1 51 06 01 e8 8c 90 d8 01 <0f> 0b e9 70 ee ff ff e8 3e 07 4b fa 4c 89 e7 e8 86 2a 59 fa e9 ee RSP: 0018:ffffc900046ff6e0 EFLAGS: 00010286 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: ffff888050f51d00 RSI: ffffffff815fa008 RDI: fffff520008dfece RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000 R10: ffffffff815f3d6e R11: 0000000000000000 R12: 00000000fffffff4 R13: dffffc0000000000 R14: ffffc900046ff750 R15: ffff88807b7dc000 FS: 00007f4ab736e700(0000) GS:ffff8880b9d00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fee0b4f8990 CR3: 000000001e7d2000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> mroute_clean_tables+0x244/0xb40 net/ipv6/ip6mr.c:1509 ip6mr_free_table net/ipv6/ip6mr.c:389 [inline] ip6mr_rules_init net/ipv6/ip6mr.c:246 [inline] ip6mr_net_init net/ipv6/ip6mr.c:1306 [inline] ip6mr_net_init+0x3f0/0x4e0 net/ipv6/ip6mr.c:1298 ops_init+0xaf/0x470 net/core/net_namespace.c:140 setup_net+0x54f/0xbb0 net/core/net_namespace.c:331 copy_net_ns+0x318/0x760 net/core/net_namespace.c:475 create_new_namespaces+0x3f6/0xb20 kernel/nsproxy.c:110 copy_namespaces+0x391/0x450 kernel/nsproxy.c:178 copy_process+0x2e0c/0x7300 kernel/fork.c:2167 kernel_clone+0xe7/0xab0 kernel/fork.c:2555 __do_sys_clone+0xc8/0x110 kernel/fork.c:2672 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f4ab89f9059 Code: Unable to access opcode bytes at RIP 0x7f4ab89f902f. RSP: 002b:00007f4ab736e118 EFLAGS: 00000206 ORIG_RAX: 0000000000000038 RAX: ffffffffffffffda RBX: 00007f4ab8b0bf60 RCX: 00007f4ab89f9059 RDX: 0000000020000280 RSI: 0000000020000270 RDI: 0000000040200000 RBP: 00007f4ab8a5308d R08: 0000000020000300 R09: 0000000020000300 R10: 00000000200002c0 R11: 0000000000000206 R12: 0000000000000000 R13: 00007ffc3977cc1f R14: 00007f4ab736e300 R15: 0000000000022000 </TASK> | |||||
| CVE-2022-48806 | 1 Linux | 1 Linux Kernel | 2025-10-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: eeprom: ee1004: limit i2c reads to I2C_SMBUS_BLOCK_MAX Commit effa453168a7 ("i2c: i801: Don't silently correct invalid transfer size") revealed that ee1004_eeprom_read() did not properly limit how many bytes to read at once. In particular, i2c_smbus_read_i2c_block_data_or_emulated() takes the length to read as an u8. If count == 256 after taking into account the offset and page boundary, the cast to u8 overflows. And this is common when user space tries to read the entire EEPROM at once. To fix it, limit each read to I2C_SMBUS_BLOCK_MAX (32) bytes, already the maximum length i2c_smbus_read_i2c_block_data_or_emulated() allows. | |||||
| CVE-2022-48802 | 1 Linux | 1 Linux Kernel | 2025-10-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: fs/proc: task_mmu.c: don't read mapcount for migration entry The syzbot reported the below BUG: kernel BUG at include/linux/page-flags.h:785! invalid opcode: 0000 [#1] PREEMPT SMP KASAN CPU: 1 PID: 4392 Comm: syz-executor560 Not tainted 5.16.0-rc6-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:PageDoubleMap include/linux/page-flags.h:785 [inline] RIP: 0010:__page_mapcount+0x2d2/0x350 mm/util.c:744 Call Trace: page_mapcount include/linux/mm.h:837 [inline] smaps_account+0x470/0xb10 fs/proc/task_mmu.c:466 smaps_pte_entry fs/proc/task_mmu.c:538 [inline] smaps_pte_range+0x611/0x1250 fs/proc/task_mmu.c:601 walk_pmd_range mm/pagewalk.c:128 [inline] walk_pud_range mm/pagewalk.c:205 [inline] walk_p4d_range mm/pagewalk.c:240 [inline] walk_pgd_range mm/pagewalk.c:277 [inline] __walk_page_range+0xe23/0x1ea0 mm/pagewalk.c:379 walk_page_vma+0x277/0x350 mm/pagewalk.c:530 smap_gather_stats.part.0+0x148/0x260 fs/proc/task_mmu.c:768 smap_gather_stats fs/proc/task_mmu.c:741 [inline] show_smap+0xc6/0x440 fs/proc/task_mmu.c:822 seq_read_iter+0xbb0/0x1240 fs/seq_file.c:272 seq_read+0x3e0/0x5b0 fs/seq_file.c:162 vfs_read+0x1b5/0x600 fs/read_write.c:479 ksys_read+0x12d/0x250 fs/read_write.c:619 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae The reproducer was trying to read /proc/$PID/smaps when calling MADV_FREE at the mean time. MADV_FREE may split THPs if it is called for partial THP. It may trigger the below race: CPU A CPU B ----- ----- smaps walk: MADV_FREE: page_mapcount() PageCompound() split_huge_page() page = compound_head(page) PageDoubleMap(page) When calling PageDoubleMap() this page is not a tail page of THP anymore so the BUG is triggered. This could be fixed by elevated refcount of the page before calling mapcount, but that would prevent it from counting migration entries, and it seems overkilling because the race just could happen when PMD is split so all PTE entries of tail pages are actually migration entries, and smaps_account() does treat migration entries as mapcount == 1 as Kirill pointed out. Add a new parameter for smaps_account() to tell this entry is migration entry then skip calling page_mapcount(). Don't skip getting mapcount for device private entries since they do track references with mapcount. Pagemap also has the similar issue although it was not reported. Fixed it as well. [shy828301@gmail.com: v4] [nathan@kernel.org: avoid unused variable warning in pagemap_pmd_range()] | |||||
| CVE-2022-48799 | 1 Linux | 1 Linux Kernel | 2025-10-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: perf: Fix list corruption in perf_cgroup_switch() There's list corruption on cgrp_cpuctx_list. This happens on the following path: perf_cgroup_switch: list_for_each_entry(cgrp_cpuctx_list) cpu_ctx_sched_in ctx_sched_in ctx_pinned_sched_in merge_sched_in perf_cgroup_event_disable: remove the event from the list Use list_for_each_entry_safe() to allow removing an entry during iteration. | |||||
| CVE-2022-48798 | 1 Linux | 1 Linux Kernel | 2025-10-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: s390/cio: verify the driver availability for path_event call If no driver is attached to a device or the driver does not provide the path_event function, an FCES path-event on this device could end up in a kernel-panic. Verify the driver availability before the path_event function call. | |||||
| CVE-2022-48797 | 1 Linux | 1 Linux Kernel | 2025-10-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: mm: don't try to NUMA-migrate COW pages that have other uses Oded Gabbay reports that enabling NUMA balancing causes corruption with his Gaudi accelerator test load: "All the details are in the bug, but the bottom line is that somehow, this patch causes corruption when the numa balancing feature is enabled AND we don't use process affinity AND we use GUP to pin pages so our accelerator can DMA to/from system memory. Either disabling numa balancing, using process affinity to bind to specific numa-node or reverting this patch causes the bug to disappear" and Oded bisected the issue to commit 09854ba94c6a ("mm: do_wp_page() simplification"). Now, the NUMA balancing shouldn't actually be changing the writability of a page, and as such shouldn't matter for COW. But it appears it does. Suspicious. However, regardless of that, the condition for enabling NUMA faults in change_pte_range() is nonsensical. It uses "page_mapcount(page)" to decide if a COW page should be NUMA-protected or not, and that makes absolutely no sense. The number of mappings a page has is irrelevant: not only does GUP get a reference to a page as in Oded's case, but the other mappings migth be paged out and the only reference to them would be in the page count. Since we should never try to NUMA-balance a page that we can't move anyway due to other references, just fix the code to use 'page_count()'. Oded confirms that that fixes his issue. Now, this does imply that something in NUMA balancing ends up changing page protections (other than the obvious one of making the page inaccessible to get the NUMA faulting information). Otherwise the COW simplification wouldn't matter - since doing the GUP on the page would make sure it's writable. The cause of that permission change would be good to figure out too, since it clearly results in spurious COW events - but fixing the nonsensical test that just happened to work before is obviously the CorrectThing(tm) to do regardless. | |||||
