Total
6052 CVE
| CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
|---|---|---|---|---|---|
| CVE-2024-56635 | 1 Linux | 1 Linux Kernel | 2025-02-10 | N/A | 7.0 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: net: avoid potential UAF in default_operstate() syzbot reported an UAF in default_operstate() [1] Issue is a race between device and netns dismantles. After calling __rtnl_unlock() from netdev_run_todo(), we can not assume the netns of each device is still alive. Make sure the device is not in NETREG_UNREGISTERED state, and add an ASSERT_RTNL() before the call to __dev_get_by_index(). We might move this ASSERT_RTNL() in __dev_get_by_index() in the future. [1] BUG: KASAN: slab-use-after-free in __dev_get_by_index+0x5d/0x110 net/core/dev.c:852 Read of size 8 at addr ffff888043eba1b0 by task syz.0.0/5339 CPU: 0 UID: 0 PID: 5339 Comm: syz.0.0 Not tainted 6.12.0-syzkaller-10296-gaaf20f870da0 #0 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0x169/0x550 mm/kasan/report.c:489 kasan_report+0x143/0x180 mm/kasan/report.c:602 __dev_get_by_index+0x5d/0x110 net/core/dev.c:852 default_operstate net/core/link_watch.c:51 [inline] rfc2863_policy+0x224/0x300 net/core/link_watch.c:67 linkwatch_do_dev+0x3e/0x170 net/core/link_watch.c:170 netdev_run_todo+0x461/0x1000 net/core/dev.c:10894 rtnl_unlock net/core/rtnetlink.c:152 [inline] rtnl_net_unlock include/linux/rtnetlink.h:133 [inline] rtnl_dellink+0x760/0x8d0 net/core/rtnetlink.c:3520 rtnetlink_rcv_msg+0x791/0xcf0 net/core/rtnetlink.c:6911 netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2541 netlink_unicast_kernel net/netlink/af_netlink.c:1321 [inline] netlink_unicast+0x7f6/0x990 net/netlink/af_netlink.c:1347 netlink_sendmsg+0x8e4/0xcb0 net/netlink/af_netlink.c:1891 sock_sendmsg_nosec net/socket.c:711 [inline] __sock_sendmsg+0x221/0x270 net/socket.c:726 ____sys_sendmsg+0x52a/0x7e0 net/socket.c:2583 ___sys_sendmsg net/socket.c:2637 [inline] __sys_sendmsg+0x269/0x350 net/socket.c:2669 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f2a3cb80809 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f2a3d9cd058 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00007f2a3cd45fa0 RCX: 00007f2a3cb80809 RDX: 0000000000000000 RSI: 0000000020000000 RDI: 0000000000000008 RBP: 00007f2a3cbf393e R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 0000000000000000 R14: 00007f2a3cd45fa0 R15: 00007ffd03bc65c8 </TASK> Allocated by task 5339: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:377 [inline] __kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:394 kasan_kmalloc include/linux/kasan.h:260 [inline] __kmalloc_cache_noprof+0x243/0x390 mm/slub.c:4314 kmalloc_noprof include/linux/slab.h:901 [inline] kmalloc_array_noprof include/linux/slab.h:945 [inline] netdev_create_hash net/core/dev.c:11870 [inline] netdev_init+0x10c/0x250 net/core/dev.c:11890 ops_init+0x31e/0x590 net/core/net_namespace.c:138 setup_net+0x287/0x9e0 net/core/net_namespace.c:362 copy_net_ns+0x33f/0x570 net/core/net_namespace.c:500 create_new_namespaces+0x425/0x7b0 kernel/nsproxy.c:110 unshare_nsproxy_namespaces+0x124/0x180 kernel/nsproxy.c:228 ksys_unshare+0x57d/0xa70 kernel/fork.c:3314 __do_sys_unshare kernel/fork.c:3385 [inline] __se_sys_unshare kernel/fork.c:3383 [inline] __x64_sys_unshare+0x38/0x40 kernel/fork.c:3383 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x8 ---truncated--- | |||||
| CVE-2024-56556 | 1 Linux | 1 Linux Kernel | 2025-02-10 | N/A | 7.0 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: binder: fix node UAF in binder_add_freeze_work() In binder_add_freeze_work() we iterate over the proc->nodes with the proc->inner_lock held. However, this lock is temporarily dropped in order to acquire the node->lock first (lock nesting order). This can race with binder_node_release() and trigger a use-after-free: ================================================================== BUG: KASAN: slab-use-after-free in _raw_spin_lock+0xe4/0x19c Write of size 4 at addr ffff53c04c29dd04 by task freeze/640 CPU: 5 UID: 0 PID: 640 Comm: freeze Not tainted 6.11.0-07343-ga727812a8d45 #17 Hardware name: linux,dummy-virt (DT) Call trace: _raw_spin_lock+0xe4/0x19c binder_add_freeze_work+0x148/0x478 binder_ioctl+0x1e70/0x25ac __arm64_sys_ioctl+0x124/0x190 Allocated by task 637: __kmalloc_cache_noprof+0x12c/0x27c binder_new_node+0x50/0x700 binder_transaction+0x35ac/0x6f74 binder_thread_write+0xfb8/0x42a0 binder_ioctl+0x18f0/0x25ac __arm64_sys_ioctl+0x124/0x190 Freed by task 637: kfree+0xf0/0x330 binder_thread_read+0x1e88/0x3a68 binder_ioctl+0x16d8/0x25ac __arm64_sys_ioctl+0x124/0x190 ================================================================== Fix the race by taking a temporary reference on the node before releasing the proc->inner lock. This ensures the node remains alive while in use. | |||||
| CVE-2024-56554 | 1 Linux | 1 Linux Kernel | 2025-02-10 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: binder: fix freeze UAF in binder_release_work() When a binder reference is cleaned up, any freeze work queued in the associated process should also be removed. Otherwise, the reference is freed while its ref->freeze.work is still queued in proc->work leading to a use-after-free issue as shown by the following KASAN report: ================================================================== BUG: KASAN: slab-use-after-free in binder_release_work+0x398/0x3d0 Read of size 8 at addr ffff31600ee91488 by task kworker/5:1/211 CPU: 5 UID: 0 PID: 211 Comm: kworker/5:1 Not tainted 6.11.0-rc7-00382-gfc6c92196396 #22 Hardware name: linux,dummy-virt (DT) Workqueue: events binder_deferred_func Call trace: binder_release_work+0x398/0x3d0 binder_deferred_func+0xb60/0x109c process_one_work+0x51c/0xbd4 worker_thread+0x608/0xee8 Allocated by task 703: __kmalloc_cache_noprof+0x130/0x280 binder_thread_write+0xdb4/0x42a0 binder_ioctl+0x18f0/0x25ac __arm64_sys_ioctl+0x124/0x190 invoke_syscall+0x6c/0x254 Freed by task 211: kfree+0xc4/0x230 binder_deferred_func+0xae8/0x109c process_one_work+0x51c/0xbd4 worker_thread+0x608/0xee8 ================================================================== This commit fixes the issue by ensuring any queued freeze work is removed when cleaning up a binder reference. | |||||
| CVE-2024-53232 | 1 Linux | 1 Linux Kernel | 2025-02-10 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: iommu/s390: Implement blocking domain This fixes a crash when surprise hot-unplugging a PCI device. This crash happens because during hot-unplug __iommu_group_set_domain_nofail() attaching the default domain fails when the platform no longer recognizes the device as it has already been removed and we end up with a NULL domain pointer and UAF. This is exactly the case referred to in the second comment in __iommu_device_set_domain() and just as stated there if we can instead attach the blocking domain the UAF is prevented as this can handle the already removed device. Implement the blocking domain to use this handling. With this change, the crash is fixed but we still hit a warning attempting to change DMA ownership on a blocked device. | |||||
| CVE-2024-53186 | 1 Linux | 1 Linux Kernel | 2025-02-10 | N/A | 7.0 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix use-after-free in SMB request handling A race condition exists between SMB request handling in `ksmbd_conn_handler_loop()` and the freeing of `ksmbd_conn` in the workqueue handler `handle_ksmbd_work()`. This leads to a UAF. - KASAN: slab-use-after-free Read in handle_ksmbd_work - KASAN: slab-use-after-free in rtlock_slowlock_locked This race condition arises as follows: - `ksmbd_conn_handler_loop()` waits for `conn->r_count` to reach zero: `wait_event(conn->r_count_q, atomic_read(&conn->r_count) == 0);` - Meanwhile, `handle_ksmbd_work()` decrements `conn->r_count` using `atomic_dec_return(&conn->r_count)`, and if it reaches zero, calls `ksmbd_conn_free()`, which frees `conn`. - However, after `handle_ksmbd_work()` decrements `conn->r_count`, it may still access `conn->r_count_q` in the following line: `waitqueue_active(&conn->r_count_q)` or `wake_up(&conn->r_count_q)` This results in a UAF, as `conn` has already been freed. The discovery of this UAF can be referenced in the following PR for syzkaller's support for SMB requests. | |||||
| CVE-2024-53179 | 1 Linux | 1 Linux Kernel | 2025-02-10 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: smb: client: fix use-after-free of signing key Customers have reported use-after-free in @ses->auth_key.response with SMB2.1 + sign mounts which occurs due to following race: task A task B cifs_mount() dfs_mount_share() get_session() cifs_mount_get_session() cifs_send_recv() cifs_get_smb_ses() compound_send_recv() cifs_setup_session() smb2_setup_request() kfree_sensitive() smb2_calc_signature() crypto_shash_setkey() *UAF* Fix this by ensuring that we have a valid @ses->auth_key.response by checking whether @ses->ses_status is SES_GOOD or SES_EXITING with @ses->ses_lock held. After commit 24a9799aa8ef ("smb: client: fix UAF in smb2_reconnect_server()"), we made sure to call ->logoff() only when @ses was known to be good (e.g. valid ->auth_key.response), so it's safe to access signing key when @ses->ses_status == SES_EXITING. | |||||
| CVE-2024-53168 | 1 Linux | 1 Linux Kernel | 2025-02-10 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: sunrpc: fix one UAF issue caused by sunrpc kernel tcp socket BUG: KASAN: slab-use-after-free in tcp_write_timer_handler+0x156/0x3e0 Read of size 1 at addr ffff888111f322cd by task swapper/0/0 CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.12.0-rc4-dirty #7 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 Call Trace: <IRQ> dump_stack_lvl+0x68/0xa0 print_address_description.constprop.0+0x2c/0x3d0 print_report+0xb4/0x270 kasan_report+0xbd/0xf0 tcp_write_timer_handler+0x156/0x3e0 tcp_write_timer+0x66/0x170 call_timer_fn+0xfb/0x1d0 __run_timers+0x3f8/0x480 run_timer_softirq+0x9b/0x100 handle_softirqs+0x153/0x390 __irq_exit_rcu+0x103/0x120 irq_exit_rcu+0xe/0x20 sysvec_apic_timer_interrupt+0x76/0x90 </IRQ> <TASK> asm_sysvec_apic_timer_interrupt+0x1a/0x20 RIP: 0010:default_idle+0xf/0x20 Code: 4c 01 c7 4c 29 c2 e9 72 ff ff ff 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 66 90 0f 00 2d 33 f8 25 00 fb f4 <fa> c3 cc cc cc cc 66 66 2e 0f 1f 84 00 00 00 00 00 90 90 90 90 90 RSP: 0018:ffffffffa2007e28 EFLAGS: 00000242 RAX: 00000000000f3b31 RBX: 1ffffffff4400fc7 RCX: ffffffffa09c3196 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffffff9f00590f RBP: 0000000000000000 R08: 0000000000000001 R09: ffffed102360835d R10: ffff88811b041aeb R11: 0000000000000001 R12: 0000000000000000 R13: ffffffffa202d7c0 R14: 0000000000000000 R15: 00000000000147d0 default_idle_call+0x6b/0xa0 cpuidle_idle_call+0x1af/0x1f0 do_idle+0xbc/0x130 cpu_startup_entry+0x33/0x40 rest_init+0x11f/0x210 start_kernel+0x39a/0x420 x86_64_start_reservations+0x18/0x30 x86_64_start_kernel+0x97/0xa0 common_startup_64+0x13e/0x141 </TASK> Allocated by task 595: kasan_save_stack+0x24/0x50 kasan_save_track+0x14/0x30 __kasan_slab_alloc+0x87/0x90 kmem_cache_alloc_noprof+0x12b/0x3f0 copy_net_ns+0x94/0x380 create_new_namespaces+0x24c/0x500 unshare_nsproxy_namespaces+0x75/0xf0 ksys_unshare+0x24e/0x4f0 __x64_sys_unshare+0x1f/0x30 do_syscall_64+0x70/0x180 entry_SYSCALL_64_after_hwframe+0x76/0x7e Freed by task 100: kasan_save_stack+0x24/0x50 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 __kasan_slab_free+0x54/0x70 kmem_cache_free+0x156/0x5d0 cleanup_net+0x5d3/0x670 process_one_work+0x776/0xa90 worker_thread+0x2e2/0x560 kthread+0x1a8/0x1f0 ret_from_fork+0x34/0x60 ret_from_fork_asm+0x1a/0x30 Reproduction script: mkdir -p /mnt/nfsshare mkdir -p /mnt/nfs/netns_1 mkfs.ext4 /dev/sdb mount /dev/sdb /mnt/nfsshare systemctl restart nfs-server chmod 777 /mnt/nfsshare exportfs -i -o rw,no_root_squash *:/mnt/nfsshare ip netns add netns_1 ip link add name veth_1_peer type veth peer veth_1 ifconfig veth_1_peer 11.11.0.254 up ip link set veth_1 netns netns_1 ip netns exec netns_1 ifconfig veth_1 11.11.0.1 ip netns exec netns_1 /root/iptables -A OUTPUT -d 11.11.0.254 -p tcp \ --tcp-flags FIN FIN -j DROP (note: In my environment, a DESTROY_CLIENTID operation is always sent immediately, breaking the nfs tcp connection.) ip netns exec netns_1 timeout -s 9 300 mount -t nfs -o proto=tcp,vers=4.1 \ 11.11.0.254:/mnt/nfsshare /mnt/nfs/netns_1 ip netns del netns_1 The reason here is that the tcp socket in netns_1 (nfs side) has been shutdown and closed (done in xs_destroy), but the FIN message (with ack) is discarded, and the nfsd side keeps sending retransmission messages. As a result, when the tcp sock in netns_1 processes the received message, it sends the message (FIN message) in the sending queue, and the tcp timer is re-established. When the network namespace is deleted, the net structure accessed by tcp's timer handler function causes problems. To fix this problem, let's hold netns refcnt for the tcp kernel socket as done in other modules. This is an ugly hack which can easily be backported to earlier kernels. A proper fix which cleans up the interfaces will follow, but may not be so easy to backport. | |||||
| CVE-2024-20765 | 3 Adobe, Apple, Microsoft | 6 Acrobat, Acrobat Dc, Acrobat Reader and 3 more | 2025-02-07 | N/A | 7.8 HIGH |
| Acrobat Reader versions 20.005.30539, 23.008.20470 and earlier are affected by a Use After Free vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. | |||||
| CVE-2023-5341 | 3 Fedoraproject, Imagemagick, Redhat | 4 Extra Packages For Enterprise Linux, Fedora, Imagemagick and 1 more | 2025-02-07 | N/A | 6.2 MEDIUM |
| A heap use-after-free flaw was found in coders/bmp.c in ImageMagick. | |||||
| CVE-2023-29132 | 1 Irssi | 1 Irssi | 2025-02-06 | N/A | 5.3 MEDIUM |
| Irssi 1.3.x and 1.4.x before 1.4.4 has a use-after-free because of use of a stale special collector reference. This occurs when printing of a non-formatted line is concurrent with printing of a formatted line. | |||||
| CVE-2024-30386 | 1 Juniper | 2 Junos, Junos Os Evolved | 2025-02-06 | N/A | 5.3 MEDIUM |
| A Use-After-Free vulnerability in the Layer 2 Address Learning Daemon (l2ald) of Juniper Networks Junos OS and Junos OS Evolved allows an unauthenticated, adjacent attacker to cause l2ald to crash leading to a Denial-of-Service (DoS). In an EVPN-VXLAN scenario, when state updates are received and processed by the affected system, the correct order of some processing steps is not ensured, which can lead to an l2ald crash and restart. Whether the crash occurs depends on system internal timing which is outside the attackers control. This issue affects: Junos OS: * All versions before 20.4R3-S8, * 21.2 versions before 21.2R3-S6, * 21.3 versions before 21.3R3-S5, * 21.4 versions before 21.4R3-S4, * 22.1 versions before 22.1R3-S3, * 22.2 versions before 22.2R3-S1, * 22.3 versions before 22.3R3,, * 22.4 versions before 22.4R2; Junos OS Evolved: * All versions before 20.4R3-S8-EVO, * 21.2-EVO versions before 21.2R3-S6-EVO, * 21.3-EVO versions before 21.3R3-S5-EVO, * 21.4-EVO versions before 21.4R3-S4-EVO, * 22.1-EVO versions before 22.1R3-S3-EVO, * 22.2-EVO versions before 22.2R3-S1-EVO, * 22.3-EVO versions before 22.3R3-EVO, * 22.4-EVO versions before 22.4R2-EVO. | |||||
| CVE-2022-44514 | 3 Adobe, Apple, Microsoft | 6 Acrobat, Acrobat Dc, Acrobat Reader and 3 more | 2025-02-06 | N/A | 7.8 HIGH |
| Acrobat Reader DC version 22.001.20085 (and earlier), 20.005.3031x (and earlier) and 17.012.30205 (and earlier) are affected by a use-after-free vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. | |||||
| CVE-2022-44518 | 3 Adobe, Apple, Microsoft | 6 Acrobat, Acrobat Dc, Acrobat Reader and 3 more | 2025-02-06 | N/A | 7.8 HIGH |
| Acrobat Reader DC version 22.001.20085 (and earlier), 20.005.3031x (and earlier) and 17.012.30205 (and earlier) are affected by a use-after-free vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. | |||||
| CVE-2022-44519 | 3 Adobe, Apple, Microsoft | 6 Acrobat, Acrobat Dc, Acrobat Reader and 3 more | 2025-02-06 | N/A | 5.5 MEDIUM |
| Acrobat Reader DC version 22.001.20085 (and earlier), 20.005.3031x (and earlier) and 17.012.30205 (and earlier) are affected by a use-after-free vulnerability that could lead to disclosure of sensitive memory. An attacker could leverage this vulnerability to bypass mitigations such as ASLR. Exploitation of this issue requires user interaction in that a victim must open a malicious file. | |||||
| CVE-2022-44520 | 3 Adobe, Apple, Microsoft | 6 Acrobat, Acrobat Dc, Acrobat Reader and 3 more | 2025-02-06 | N/A | 7.8 HIGH |
| Acrobat Reader DC version 22.001.20085 (and earlier), 20.005.3031x (and earlier) and 17.012.30205 (and earlier) are affected by a use-after-free vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. | |||||
| CVE-2018-11816 | 1 Qualcomm | 28 9206 Lte Modem, 9206 Lte Modem Firmware, Apq8016 and 25 more | 2025-02-06 | N/A | 7.8 HIGH |
| Crafted Binder Request Causes Heap UAF in MediaServer | |||||
| CVE-2023-21096 | 1 Google | 1 Android | 2025-02-05 | N/A | 9.8 CRITICAL |
| In OnWakelockReleased of attribution_processor.cc, there is a use after free that could lead to remote code execution with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-12 Android-12L Android-13Android ID: A-254774758 | |||||
| CVE-2024-45571 | 1 Qualcomm | 300 Ar8035, Ar8035 Firmware, Csr8811 and 297 more | 2025-02-05 | N/A | 7.8 HIGH |
| Memory corruption may occour occur when stopping the WLAN interface after processing a WMI command from the interface. | |||||
| CVE-2024-38412 | 1 Qualcomm | 14 Fastconnect 7800, Fastconnect 7800 Firmware, Snapdragon 8 Gen 3 Mobile and 11 more | 2025-02-05 | N/A | 6.6 MEDIUM |
| Memory corruption while invoking IOCTL calls from user-space to kernel-space to handle session errors. | |||||
| CVE-2024-45561 | 1 Qualcomm | 64 Aqt1000, Aqt1000 Firmware, Fastconnect 6200 and 61 more | 2025-02-05 | N/A | 7.8 HIGH |
| Memory corruption while handling IOCTL call from user-space to set latency level. | |||||
