Total
1173 CVE
| CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
|---|---|---|---|---|---|
| CVE-2025-6498 | 1 Htacg | 1 Tidy | 2025-09-30 | 1.7 LOW | 3.3 LOW |
| A vulnerability classified as problematic has been found in HTACG tidy-html5 5.8.0. Affected is the function defaultAlloc of the file src/alloc.c. The manipulation leads to memory leak. It is possible to launch the attack on the local host. The exploit has been disclosed to the public and may be used. | |||||
| CVE-2024-36911 | 1 Linux | 1 Linux Kernel | 2025-09-30 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: hv_netvsc: Don't free decrypted memory In CoCo VMs it is possible for the untrusted host to cause set_memory_encrypted() or set_memory_decrypted() to fail such that an error is returned and the resulting memory is shared. Callers need to take care to handle these errors to avoid returning decrypted (shared) memory to the page allocator, which could lead to functional or security issues. The netvsc driver could free decrypted/shared pages if set_memory_decrypted() fails. Check the decrypted field in the gpadl to decide whether to free the memory. | |||||
| CVE-2024-36909 | 1 Linux | 1 Linux Kernel | 2025-09-30 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: Drivers: hv: vmbus: Don't free ring buffers that couldn't be re-encrypted In CoCo VMs it is possible for the untrusted host to cause set_memory_encrypted() or set_memory_decrypted() to fail such that an error is returned and the resulting memory is shared. Callers need to take care to handle these errors to avoid returning decrypted (shared) memory to the page allocator, which could lead to functional or security issues. The VMBus ring buffer code could free decrypted/shared pages if set_memory_decrypted() fails. Check the decrypted field in the struct vmbus_gpadl for the ring buffers to decide whether to free the memory. | |||||
| CVE-2024-57886 | 1 Linux | 1 Linux Kernel | 2025-09-26 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: mm/damon/core: fix new damon_target objects leaks on damon_commit_targets() Patch series "mm/damon/core: fix memory leaks and ignored inputs from damon_commit_ctx()". Due to two bugs in damon_commit_targets() and damon_commit_schemes(), which are called from damon_commit_ctx(), some user inputs can be ignored, and some mmeory objects can be leaked. Fix those. Note that only DAMON sysfs interface users are affected. Other DAMON core API user modules that more focused more on simple and dedicated production usages, including DAMON_RECLAIM and DAMON_LRU_SORT are not using the buggy function in the way, so not affected. This patch (of 2): When new DAMON targets are added via damon_commit_targets(), the newly created targets are not deallocated when updating the internal data (damon_commit_target()) is failed. Worse yet, even if the setup is successfully done, the new target is not linked to the context. Hence, the new targets are always leaked regardless of the internal data setup failure. Fix the leaks. | |||||
| CVE-2024-57885 | 1 Linux | 1 Linux Kernel | 2025-09-26 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: mm/kmemleak: fix sleeping function called from invalid context at print message Address a bug in the kernel that triggers a "sleeping function called from invalid context" warning when /sys/kernel/debug/kmemleak is printed under specific conditions: - CONFIG_PREEMPT_RT=y - Set SELinux as the LSM for the system - Set kptr_restrict to 1 - kmemleak buffer contains at least one item BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48 in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 136, name: cat preempt_count: 1, expected: 0 RCU nest depth: 2, expected: 2 6 locks held by cat/136: #0: ffff32e64bcbf950 (&p->lock){+.+.}-{3:3}, at: seq_read_iter+0xb8/0xe30 #1: ffffafe6aaa9dea0 (scan_mutex){+.+.}-{3:3}, at: kmemleak_seq_start+0x34/0x128 #3: ffff32e6546b1cd0 (&object->lock){....}-{2:2}, at: kmemleak_seq_show+0x3c/0x1e0 #4: ffffafe6aa8d8560 (rcu_read_lock){....}-{1:2}, at: has_ns_capability_noaudit+0x8/0x1b0 #5: ffffafe6aabbc0f8 (notif_lock){+.+.}-{2:2}, at: avc_compute_av+0xc4/0x3d0 irq event stamp: 136660 hardirqs last enabled at (136659): [<ffffafe6a80fd7a0>] _raw_spin_unlock_irqrestore+0xa8/0xd8 hardirqs last disabled at (136660): [<ffffafe6a80fd85c>] _raw_spin_lock_irqsave+0x8c/0xb0 softirqs last enabled at (0): [<ffffafe6a5d50b28>] copy_process+0x11d8/0x3df8 softirqs last disabled at (0): [<0000000000000000>] 0x0 Preemption disabled at: [<ffffafe6a6598a4c>] kmemleak_seq_show+0x3c/0x1e0 CPU: 1 UID: 0 PID: 136 Comm: cat Tainted: G E 6.11.0-rt7+ #34 Tainted: [E]=UNSIGNED_MODULE Hardware name: linux,dummy-virt (DT) Call trace: dump_backtrace+0xa0/0x128 show_stack+0x1c/0x30 dump_stack_lvl+0xe8/0x198 dump_stack+0x18/0x20 rt_spin_lock+0x8c/0x1a8 avc_perm_nonode+0xa0/0x150 cred_has_capability.isra.0+0x118/0x218 selinux_capable+0x50/0x80 security_capable+0x7c/0xd0 has_ns_capability_noaudit+0x94/0x1b0 has_capability_noaudit+0x20/0x30 restricted_pointer+0x21c/0x4b0 pointer+0x298/0x760 vsnprintf+0x330/0xf70 seq_printf+0x178/0x218 print_unreferenced+0x1a4/0x2d0 kmemleak_seq_show+0xd0/0x1e0 seq_read_iter+0x354/0xe30 seq_read+0x250/0x378 full_proxy_read+0xd8/0x148 vfs_read+0x190/0x918 ksys_read+0xf0/0x1e0 __arm64_sys_read+0x70/0xa8 invoke_syscall.constprop.0+0xd4/0x1d8 el0_svc+0x50/0x158 el0t_64_sync+0x17c/0x180 %pS and %pK, in the same back trace line, are redundant, and %pS can void %pK service in certain contexts. %pS alone already provides the necessary information, and if it cannot resolve the symbol, it falls back to printing the raw address voiding the original intent behind the %pK. Additionally, %pK requires a privilege check CAP_SYSLOG enforced through the LSM, which can trigger a "sleeping function called from invalid context" warning under RT_PREEMPT kernels when the check occurs in an atomic context. This issue may also affect other LSMs. This change avoids the unnecessary privilege check and resolves the sleeping function warning without any loss of information. | |||||
| CVE-2024-43880 | 1 Linux | 1 Linux Kernel | 2025-09-26 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_erp: Fix object nesting warning ACLs in Spectrum-2 and newer ASICs can reside in the algorithmic TCAM (A-TCAM) or in the ordinary circuit TCAM (C-TCAM). The former can contain more ACLs (i.e., tc filters), but the number of masks in each region (i.e., tc chain) is limited. In order to mitigate the effects of the above limitation, the device allows filters to share a single mask if their masks only differ in up to 8 consecutive bits. For example, dst_ip/25 can be represented using dst_ip/24 with a delta of 1 bit. The C-TCAM does not have a limit on the number of masks being used (and therefore does not support mask aggregation), but can contain a limited number of filters. The driver uses the "objagg" library to perform the mask aggregation by passing it objects that consist of the filter's mask and whether the filter is to be inserted into the A-TCAM or the C-TCAM since filters in different TCAMs cannot share a mask. The set of created objects is dependent on the insertion order of the filters and is not necessarily optimal. Therefore, the driver will periodically ask the library to compute a more optimal set ("hints") by looking at all the existing objects. When the library asks the driver whether two objects can be aggregated the driver only compares the provided masks and ignores the A-TCAM / C-TCAM indication. This is the right thing to do since the goal is to move as many filters as possible to the A-TCAM. The driver also forbids two identical masks from being aggregated since this can only happen if one was intentionally put in the C-TCAM to avoid a conflict in the A-TCAM. The above can result in the following set of hints: H1: {mask X, A-TCAM} -> H2: {mask Y, A-TCAM} // X is Y + delta H3: {mask Y, C-TCAM} -> H4: {mask Z, A-TCAM} // Y is Z + delta After getting the hints from the library the driver will start migrating filters from one region to another while consulting the computed hints and instructing the device to perform a lookup in both regions during the transition. Assuming a filter with mask X is being migrated into the A-TCAM in the new region, the hints lookup will return H1. Since H2 is the parent of H1, the library will try to find the object associated with it and create it if necessary in which case another hints lookup (recursive) will be performed. This hints lookup for {mask Y, A-TCAM} will either return H2 or H3 since the driver passes the library an object comparison function that ignores the A-TCAM / C-TCAM indication. This can eventually lead to nested objects which are not supported by the library [1]. Fix by removing the object comparison function from both the driver and the library as the driver was the only user. That way the lookup will only return exact matches. I do not have a reliable reproducer that can reproduce the issue in a timely manner, but before the fix the issue would reproduce in several minutes and with the fix it does not reproduce in over an hour. Note that the current usefulness of the hints is limited because they include the C-TCAM indication and represent aggregation that cannot actually happen. This will be addressed in net-next. [1] WARNING: CPU: 0 PID: 153 at lib/objagg.c:170 objagg_obj_parent_assign+0xb5/0xd0 Modules linked in: CPU: 0 PID: 153 Comm: kworker/0:18 Not tainted 6.9.0-rc6-custom-g70fbc2c1c38b #42 Hardware name: Mellanox Technologies Ltd. MSN3700C/VMOD0008, BIOS 5.11 10/10/2018 Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work RIP: 0010:objagg_obj_parent_assign+0xb5/0xd0 [...] Call Trace: <TASK> __objagg_obj_get+0x2bb/0x580 objagg_obj_get+0xe/0x80 mlxsw_sp_acl_erp_mask_get+0xb5/0xf0 mlxsw_sp_acl_atcam_entry_add+0xe8/0x3c0 mlxsw_sp_acl_tcam_entry_create+0x5e/0xa0 mlxsw_sp_acl_tcam_vchunk_migrate_one+0x16b/0x270 mlxsw_sp_acl_tcam_vregion_rehash_work+0xbe/0x510 process_one_work+0x151/0x370 | |||||
| CVE-2024-43870 | 1 Linux | 1 Linux Kernel | 2025-09-26 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: perf: Fix event leak upon exit When a task is scheduled out, pending sigtrap deliveries are deferred to the target task upon resume to userspace via task_work. However failures while adding an event's callback to the task_work engine are ignored. And since the last call for events exit happen after task work is eventually closed, there is a small window during which pending sigtrap can be queued though ignored, leaking the event refcount addition such as in the following scenario: TASK A ----- do_exit() exit_task_work(tsk); <IRQ> perf_event_overflow() event->pending_sigtrap = pending_id; irq_work_queue(&event->pending_irq); </IRQ> =========> PREEMPTION: TASK A -> TASK B event_sched_out() event->pending_sigtrap = 0; atomic_long_inc_not_zero(&event->refcount) // FAILS: task work has exited task_work_add(&event->pending_task) [...] <IRQ WORK> perf_pending_irq() // early return: event->oncpu = -1 </IRQ WORK> [...] =========> TASK B -> TASK A perf_event_exit_task(tsk) perf_event_exit_event() free_event() WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1) // leak event due to unexpected refcount == 2 As a result the event is never released while the task exits. Fix this with appropriate task_work_add()'s error handling. | |||||
| CVE-2024-43869 | 1 Linux | 1 Linux Kernel | 2025-09-26 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: perf: Fix event leak upon exec and file release The perf pending task work is never waited upon the matching event release. In the case of a child event, released via free_event() directly, this can potentially result in a leaked event, such as in the following scenario that doesn't even require a weak IRQ work implementation to trigger: schedule() prepare_task_switch() =======> <NMI> perf_event_overflow() event->pending_sigtrap = ... irq_work_queue(&event->pending_irq) <======= </NMI> perf_event_task_sched_out() event_sched_out() event->pending_sigtrap = 0; atomic_long_inc_not_zero(&event->refcount) task_work_add(&event->pending_task) finish_lock_switch() =======> <IRQ> perf_pending_irq() //do nothing, rely on pending task work <======= </IRQ> begin_new_exec() perf_event_exit_task() perf_event_exit_event() // If is child event free_event() WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1) // event is leaked Similar scenarios can also happen with perf_event_remove_on_exec() or simply against concurrent perf_event_release(). Fix this with synchonizing against the possibly remaining pending task work while freeing the event, just like is done with remaining pending IRQ work. This means that the pending task callback neither need nor should hold a reference to the event, preventing it from ever beeing freed. | |||||
| CVE-2024-50212 | 1 Linux | 1 Linux Kernel | 2025-09-26 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: lib: alloc_tag_module_unload must wait for pending kfree_rcu calls Ben Greear reports following splat: ------------[ cut here ]------------ net/netfilter/nf_nat_core.c:1114 module nf_nat func:nf_nat_register_fn has 256 allocated at module unload WARNING: CPU: 1 PID: 10421 at lib/alloc_tag.c:168 alloc_tag_module_unload+0x22b/0x3f0 Modules linked in: nf_nat(-) btrfs ufs qnx4 hfsplus hfs minix vfat msdos fat ... Hardware name: Default string Default string/SKYBAY, BIOS 5.12 08/04/2020 RIP: 0010:alloc_tag_module_unload+0x22b/0x3f0 codetag_unload_module+0x19b/0x2a0 ? codetag_load_module+0x80/0x80 nf_nat module exit calls kfree_rcu on those addresses, but the free operation is likely still pending by the time alloc_tag checks for leaks. Wait for outstanding kfree_rcu operations to complete before checking resolves this warning. Reproducer: unshare -n iptables-nft -t nat -A PREROUTING -p tcp grep nf_nat /proc/allocinfo # will list 4 allocations rmmod nft_chain_nat rmmod nf_nat # will WARN. [akpm@linux-foundation.org: add comment] | |||||
| CVE-2024-27418 | 1 Linux | 1 Linux Kernel | 2025-09-26 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: net: mctp: take ownership of skb in mctp_local_output Currently, mctp_local_output only takes ownership of skb on success, and we may leak an skb if mctp_local_output fails in specific states; the skb ownership isn't transferred until the actual output routing occurs. Instead, make mctp_local_output free the skb on all error paths up to the route action, so it always consumes the passed skb. | |||||
| CVE-2024-35831 | 1 Linux | 1 Linux Kernel | 2025-09-26 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: io_uring: Fix release of pinned pages when __io_uaddr_map fails Looking at the error path of __io_uaddr_map, if we fail after pinning the pages for any reasons, ret will be set to -EINVAL and the error handler won't properly release the pinned pages. I didn't manage to trigger it without forcing a failure, but it can happen in real life when memory is heavily fragmented. | |||||
| CVE-2024-56624 | 1 Linux | 1 Linux Kernel | 2025-09-26 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: iommufd: Fix out_fput in iommufd_fault_alloc() As fput() calls the file->f_op->release op, where fault obj and ictx are getting released, there is no need to release these two after fput() one more time, which would result in imbalanced refcounts: refcount_t: decrement hit 0; leaking memory. WARNING: CPU: 48 PID: 2369 at lib/refcount.c:31 refcount_warn_saturate+0x60/0x230 Call trace: refcount_warn_saturate+0x60/0x230 (P) refcount_warn_saturate+0x60/0x230 (L) iommufd_fault_fops_release+0x9c/0xe0 [iommufd] ... VFS: Close: file count is 0 (f_op=iommufd_fops [iommufd]) WARNING: CPU: 48 PID: 2369 at fs/open.c:1507 filp_flush+0x3c/0xf0 Call trace: filp_flush+0x3c/0xf0 (P) filp_flush+0x3c/0xf0 (L) __arm64_sys_close+0x34/0x98 ... imbalanced put on file reference count WARNING: CPU: 48 PID: 2369 at fs/file.c:74 __file_ref_put+0x100/0x138 Call trace: __file_ref_put+0x100/0x138 (P) __file_ref_put+0x100/0x138 (L) __fput_sync+0x4c/0xd0 Drop those two lines to fix the warnings above. | |||||
| CVE-2024-35816 | 1 Linux | 1 Linux Kernel | 2025-09-26 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: firewire: ohci: prevent leak of left-over IRQ on unbind Commit 5a95f1ded28691e6 ("firewire: ohci: use devres for requested IRQ") also removed the call to free_irq() in pci_remove(), leading to a leftover irq of devm_request_irq() at pci_disable_msi() in pci_remove() when unbinding the driver from the device remove_proc_entry: removing non-empty directory 'irq/136', leaking at least 'firewire_ohci' Call Trace: ? remove_proc_entry+0x19c/0x1c0 ? __warn+0x81/0x130 ? remove_proc_entry+0x19c/0x1c0 ? report_bug+0x171/0x1a0 ? console_unlock+0x78/0x120 ? handle_bug+0x3c/0x80 ? exc_invalid_op+0x17/0x70 ? asm_exc_invalid_op+0x1a/0x20 ? remove_proc_entry+0x19c/0x1c0 unregister_irq_proc+0xf4/0x120 free_desc+0x3d/0xe0 ? kfree+0x29f/0x2f0 irq_free_descs+0x47/0x70 msi_domain_free_locked.part.0+0x19d/0x1d0 msi_domain_free_irqs_all_locked+0x81/0xc0 pci_free_msi_irqs+0x12/0x40 pci_disable_msi+0x4c/0x60 pci_remove+0x9d/0xc0 [firewire_ohci 01b483699bebf9cb07a3d69df0aa2bee71db1b26] pci_device_remove+0x37/0xa0 device_release_driver_internal+0x19f/0x200 unbind_store+0xa1/0xb0 remove irq with devm_free_irq() before pci_disable_msi() also remove it in fail_msi: of pci_probe() as this would lead to an identical leak | |||||
| CVE-2024-41078 | 1 Linux | 1 Linux Kernel | 2025-09-26 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: btrfs: qgroup: fix quota root leak after quota disable failure If during the quota disable we fail when cleaning the quota tree or when deleting the root from the root tree, we jump to the 'out' label without ever dropping the reference on the quota root, resulting in a leak of the root since fs_info->quota_root is no longer pointing to the root (we have set it to NULL just before those steps). Fix this by always doing a btrfs_put_root() call under the 'out' label. This is a problem that exists since qgroups were first added in 2012 by commit bed92eae26cc ("Btrfs: qgroup implementation and prototypes"), but back then we missed a kfree on the quota root and free_extent_buffer() calls on its root and commit root nodes, since back then roots were not yet reference counted. | |||||
| CVE-2025-43816 | 2025-09-26 | N/A | N/A | ||
| A memory leak in the headless API for StructuredContents in Liferay Portal 7.4.0 through 7.4.3.119, and older unsupported versions, and Liferay DXP 2024.Q1.1 through 2024.Q1.5, 2023.Q4.0 through 2024.Q4.10, 2023.Q3.1 through 2023.Q3.10, 7.4 GA through update 92, and older unsupported versions allows an attacker to cause server unavailability (denial of service) via repeatedly calling the API endpoint. | |||||
| CVE-2024-24267 | 1 Gpac | 1 Gpac | 2025-09-26 | N/A | 7.5 HIGH |
| gpac v2.2.1 (fixed in v2.4.0) was discovered to contain a memory leak via the gfio_blob variable in the gf_fileio_from_blob function. | |||||
| CVE-2024-41021 | 1 Linux | 1 Linux Kernel | 2025-09-25 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: s390/mm: Fix VM_FAULT_HWPOISON handling in do_exception() There is no support for HWPOISON, MEMORY_FAILURE, or ARCH_HAS_COPY_MC on s390. Therefore we do not expect to see VM_FAULT_HWPOISON in do_exception(). However, since commit af19487f00f3 ("mm: make PTE_MARKER_SWAPIN_ERROR more general"), it is possible to see VM_FAULT_HWPOISON in combination with PTE_MARKER_POISONED, even on architectures that do not support HWPOISON otherwise. In this case, we will end up on the BUG() in do_exception(). Fix this by treating VM_FAULT_HWPOISON the same as VM_FAULT_SIGBUS, similar to x86 when MEMORY_FAILURE is not configured. Also print unexpected fault flags, for easier debugging. Note that VM_FAULT_HWPOISON_LARGE is not expected, because s390 cannot support swap entries on other levels than PTE level. | |||||
| CVE-2023-52681 | 1 Linux | 1 Linux Kernel | 2025-09-25 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: efivarfs: Free s_fs_info on unmount Now that we allocate a s_fs_info struct on fs context creation, we should ensure that we free it again when the superblock goes away. | |||||
| CVE-2021-47527 | 1 Linux | 1 Linux Kernel | 2025-09-24 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: serial: core: fix transmit-buffer reset and memleak Commit 761ed4a94582 ("tty: serial_core: convert uart_close to use tty_port_close") converted serial core to use tty_port_close() but failed to notice that the transmit buffer still needs to be freed on final close. Not freeing the transmit buffer means that the buffer is no longer cleared on next open so that any ioctl() waiting for the buffer to drain might wait indefinitely (e.g. on termios changes) or that stale data can end up being transmitted in case tx is restarted. Furthermore, the buffer of any port that has been opened would leak on driver unbind. Note that the port lock is held when clearing the buffer pointer due to the ldisc race worked around by commit a5ba1d95e46e ("uart: fix race between uart_put_char() and uart_shutdown()"). Also note that the tty-port shutdown() callback is not called for console ports so it is not strictly necessary to free the buffer page after releasing the lock (cf. d72402145ace ("tty/serial: do not free trasnmit buffer page under port lock")). | |||||
| CVE-2021-47524 | 1 Linux | 1 Linux Kernel | 2025-09-24 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: serial: liteuart: fix minor-number leak on probe errors Make sure to release the allocated minor number before returning on probe errors. | |||||
