Vulnerabilities (CVE)

Filtered by CWE-362
Total 1921 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2024-37354 1 Linux 1 Linux Kernel 2025-09-17 N/A 4.7 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix crash on racing fsync and size-extending write into prealloc We have been seeing crashes on duplicate keys in btrfs_set_item_key_safe(): BTRFS critical (device vdb): slot 4 key (450 108 8192) new key (450 108 8192) ------------[ cut here ]------------ kernel BUG at fs/btrfs/ctree.c:2620! invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 3139 Comm: xfs_io Kdump: loaded Not tainted 6.9.0 #6 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014 RIP: 0010:btrfs_set_item_key_safe+0x11f/0x290 [btrfs] With the following stack trace: #0 btrfs_set_item_key_safe (fs/btrfs/ctree.c:2620:4) #1 btrfs_drop_extents (fs/btrfs/file.c:411:4) #2 log_one_extent (fs/btrfs/tree-log.c:4732:9) #3 btrfs_log_changed_extents (fs/btrfs/tree-log.c:4955:9) #4 btrfs_log_inode (fs/btrfs/tree-log.c:6626:9) #5 btrfs_log_inode_parent (fs/btrfs/tree-log.c:7070:8) #6 btrfs_log_dentry_safe (fs/btrfs/tree-log.c:7171:8) #7 btrfs_sync_file (fs/btrfs/file.c:1933:8) #8 vfs_fsync_range (fs/sync.c:188:9) #9 vfs_fsync (fs/sync.c:202:9) #10 do_fsync (fs/sync.c:212:9) #11 __do_sys_fdatasync (fs/sync.c:225:9) #12 __se_sys_fdatasync (fs/sync.c:223:1) #13 __x64_sys_fdatasync (fs/sync.c:223:1) #14 do_syscall_x64 (arch/x86/entry/common.c:52:14) #15 do_syscall_64 (arch/x86/entry/common.c:83:7) #16 entry_SYSCALL_64+0xaf/0x14c (arch/x86/entry/entry_64.S:121) So we're logging a changed extent from fsync, which is splitting an extent in the log tree. But this split part already exists in the tree, triggering the BUG(). This is the state of the log tree at the time of the crash, dumped with drgn (https://github.com/osandov/drgn/blob/main/contrib/btrfs_tree.py) to get more details than btrfs_print_leaf() gives us: >>> print_extent_buffer(prog.crashed_thread().stack_trace()[0]["eb"]) leaf 33439744 level 0 items 72 generation 9 owner 18446744073709551610 leaf 33439744 flags 0x100000000000000 fs uuid e5bd3946-400c-4223-8923-190ef1f18677 chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da item 0 key (450 INODE_ITEM 0) itemoff 16123 itemsize 160 generation 7 transid 9 size 8192 nbytes 8473563889606862198 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 204 flags 0x10(PREALLOC) atime 1716417703.220000000 (2024-05-22 15:41:43) ctime 1716417704.983333333 (2024-05-22 15:41:44) mtime 1716417704.983333333 (2024-05-22 15:41:44) otime 17592186044416.000000000 (559444-03-08 01:40:16) item 1 key (450 INODE_REF 256) itemoff 16110 itemsize 13 index 195 namelen 3 name: 193 item 2 key (450 XATTR_ITEM 1640047104) itemoff 16073 itemsize 37 location key (0 UNKNOWN.0 0) type XATTR transid 7 data_len 1 name_len 6 name: user.a data a item 3 key (450 EXTENT_DATA 0) itemoff 16020 itemsize 53 generation 9 type 1 (regular) extent data disk byte 303144960 nr 12288 extent data offset 0 nr 4096 ram 12288 extent compression 0 (none) item 4 key (450 EXTENT_DATA 4096) itemoff 15967 itemsize 53 generation 9 type 2 (prealloc) prealloc data disk byte 303144960 nr 12288 prealloc data offset 4096 nr 8192 item 5 key (450 EXTENT_DATA 8192) itemoff 15914 itemsize 53 generation 9 type 2 (prealloc) prealloc data disk byte 303144960 nr 12288 prealloc data offset 8192 nr 4096 ... So the real problem happened earlier: notice that items 4 (4k-12k) and 5 (8k-12k) overlap. Both are prealloc extents. Item 4 straddles i_size and item 5 starts at i_size. Here is the state of ---truncated---
CVE-2024-39503 1 Linux 1 Linux Kernel 2025-09-17 N/A 7.0 HIGH
In the Linux kernel, the following vulnerability has been resolved: netfilter: ipset: Fix race between namespace cleanup and gc in the list:set type Lion Ackermann reported that there is a race condition between namespace cleanup in ipset and the garbage collection of the list:set type. The namespace cleanup can destroy the list:set type of sets while the gc of the set type is waiting to run in rcu cleanup. The latter uses data from the destroyed set which thus leads use after free. The patch contains the following parts: - When destroying all sets, first remove the garbage collectors, then wait if needed and then destroy the sets. - Fix the badly ordered "wait then remove gc" for the destroy a single set case. - Fix the missing rcu locking in the list:set type in the userspace test case. - Use proper RCU list handlings in the list:set type. The patch depends on c1193d9bbbd3 (netfilter: ipset: Add list flush to cancel_gc).
CVE-2024-40953 1 Linux 1 Linux Kernel 2025-09-17 N/A 4.7 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: KVM: Fix a data race on last_boosted_vcpu in kvm_vcpu_on_spin() Use {READ,WRITE}_ONCE() to access kvm->last_boosted_vcpu to ensure the loads and stores are atomic. In the extremely unlikely scenario the compiler tears the stores, it's theoretically possible for KVM to attempt to get a vCPU using an out-of-bounds index, e.g. if the write is split into multiple 8-bit stores, and is paired with a 32-bit load on a VM with 257 vCPUs: CPU0 CPU1 last_boosted_vcpu = 0xff; (last_boosted_vcpu = 0x100) last_boosted_vcpu[15:8] = 0x01; i = (last_boosted_vcpu = 0x1ff) last_boosted_vcpu[7:0] = 0x00; vcpu = kvm->vcpu_array[0x1ff]; As detected by KCSAN: BUG: KCSAN: data-race in kvm_vcpu_on_spin [kvm] / kvm_vcpu_on_spin [kvm] write to 0xffffc90025a92344 of 4 bytes by task 4340 on cpu 16: kvm_vcpu_on_spin (arch/x86/kvm/../../../virt/kvm/kvm_main.c:4112) kvm handle_pause (arch/x86/kvm/vmx/vmx.c:5929) kvm_intel vmx_handle_exit (arch/x86/kvm/vmx/vmx.c:? arch/x86/kvm/vmx/vmx.c:6606) kvm_intel vcpu_run (arch/x86/kvm/x86.c:11107 arch/x86/kvm/x86.c:11211) kvm kvm_arch_vcpu_ioctl_run (arch/x86/kvm/x86.c:?) kvm kvm_vcpu_ioctl (arch/x86/kvm/../../../virt/kvm/kvm_main.c:?) kvm __se_sys_ioctl (fs/ioctl.c:52 fs/ioctl.c:904 fs/ioctl.c:890) __x64_sys_ioctl (fs/ioctl.c:890) x64_sys_call (arch/x86/entry/syscall_64.c:33) do_syscall_64 (arch/x86/entry/common.c:?) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130) read to 0xffffc90025a92344 of 4 bytes by task 4342 on cpu 4: kvm_vcpu_on_spin (arch/x86/kvm/../../../virt/kvm/kvm_main.c:4069) kvm handle_pause (arch/x86/kvm/vmx/vmx.c:5929) kvm_intel vmx_handle_exit (arch/x86/kvm/vmx/vmx.c:? arch/x86/kvm/vmx/vmx.c:6606) kvm_intel vcpu_run (arch/x86/kvm/x86.c:11107 arch/x86/kvm/x86.c:11211) kvm kvm_arch_vcpu_ioctl_run (arch/x86/kvm/x86.c:?) kvm kvm_vcpu_ioctl (arch/x86/kvm/../../../virt/kvm/kvm_main.c:?) kvm __se_sys_ioctl (fs/ioctl.c:52 fs/ioctl.c:904 fs/ioctl.c:890) __x64_sys_ioctl (fs/ioctl.c:890) x64_sys_call (arch/x86/entry/syscall_64.c:33) do_syscall_64 (arch/x86/entry/common.c:?) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130) value changed: 0x00000012 -> 0x00000000
CVE-2024-40943 1 Linux 1 Linux Kernel 2025-09-17 N/A 4.7 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: ocfs2: fix races between hole punching and AIO+DIO After commit "ocfs2: return real error code in ocfs2_dio_wr_get_block", fstests/generic/300 become from always failed to sometimes failed: ======================================================================== [ 473.293420 ] run fstests generic/300 [ 475.296983 ] JBD2: Ignoring recovery information on journal [ 475.302473 ] ocfs2: Mounting device (253,1) on (node local, slot 0) with ordered data mode. [ 494.290998 ] OCFS2: ERROR (device dm-1): ocfs2_change_extent_flag: Owner 5668 has an extent at cpos 78723 which can no longer be found [ 494.291609 ] On-disk corruption discovered. Please run fsck.ocfs2 once the filesystem is unmounted. [ 494.292018 ] OCFS2: File system is now read-only. [ 494.292224 ] (kworker/19:11,2628,19):ocfs2_mark_extent_written:5272 ERROR: status = -30 [ 494.292602 ] (kworker/19:11,2628,19):ocfs2_dio_end_io_write:2374 ERROR: status = -3 fio: io_u error on file /mnt/scratch/racer: Read-only file system: write offset=460849152, buflen=131072 ========================================================================= In __blockdev_direct_IO, ocfs2_dio_wr_get_block is called to add unwritten extents to a list. extents are also inserted into extent tree in ocfs2_write_begin_nolock. Then another thread call fallocate to puch a hole at one of the unwritten extent. The extent at cpos was removed by ocfs2_remove_extent(). At end io worker thread, ocfs2_search_extent_list found there is no such extent at the cpos. T1 T2 T3 inode lock ... insert extents ... inode unlock ocfs2_fallocate __ocfs2_change_file_space inode lock lock ip_alloc_sem ocfs2_remove_inode_range inode ocfs2_remove_btree_range ocfs2_remove_extent ^---remove the extent at cpos 78723 ... unlock ip_alloc_sem inode unlock ocfs2_dio_end_io ocfs2_dio_end_io_write lock ip_alloc_sem ocfs2_mark_extent_written ocfs2_change_extent_flag ocfs2_search_extent_list ^---failed to find extent ... unlock ip_alloc_sem In most filesystems, fallocate is not compatible with racing with AIO+DIO, so fix it by adding to wait for all dio before fallocate/punch_hole like ext4.
CVE-2025-43304 1 Apple 1 Macos 2025-09-17 N/A 7.0 HIGH
A race condition was addressed with improved state handling. This issue is fixed in macOS Sequoia 15.7, macOS Sonoma 14.8, macOS Tahoe 26. An app may be able to gain root privileges.
CVE-2025-43292 1 Apple 1 Macos 2025-09-17 N/A 5.5 MEDIUM
A race condition was addressed with improved state handling. This issue is fixed in macOS Sequoia 15.7, macOS Tahoe 26. An app may be able to access sensitive user data.
CVE-2025-54919 1 Microsoft 10 Windows 10 1809, Windows 10 21h2, Windows 10 22h2 and 7 more 2025-09-12 N/A 7.5 HIGH
Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Win32K - GRFX allows an authorized attacker to execute code locally.
CVE-2025-47997 1 Microsoft 4 Sql Server 2016, Sql Server 2017, Sql Server 2019 and 1 more 2025-09-12 N/A 6.5 MEDIUM
Concurrent execution using shared resource with improper synchronization ('race condition') in SQL Server allows an authorized attacker to disclose information over a network.
CVE-2025-55226 1 Microsoft 15 Windows 10 1507, Windows 10 1607, Windows 10 1809 and 12 more 2025-09-12 N/A 6.7 MEDIUM
Concurrent execution using shared resource with improper synchronization ('race condition') in Graphics Kernel allows an authorized attacker to execute code locally.
CVE-2025-55224 1 Microsoft 10 Windows 10 1809, Windows 10 21h2, Windows 10 22h2 and 7 more 2025-09-12 N/A 7.8 HIGH
Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Win32K - GRFX allows an authorized attacker to execute code locally.
CVE-2025-55223 1 Microsoft 10 Windows 10 1809, Windows 10 21h2, Windows 10 22h2 and 7 more 2025-09-12 N/A 7.0 HIGH
Concurrent execution using shared resource with improper synchronization ('race condition') in Graphics Kernel allows an authorized attacker to elevate privileges locally.
CVE-2025-10216 2025-09-11 2.1 LOW 2.6 LOW
A vulnerability was detected in GrandNode up to 2.3.0. The impacted element is an unknown function of the file /checkout/ConfirmOrder/ of the component Voucher Handler. The manipulation of the argument giftvouchercouponcode results in race condition. The attack may be launched remotely. The attack requires a high level of complexity. The exploitability is regarded as difficult. The vendor was contacted early about this disclosure but did not respond in any way.
CVE-2025-59052 2025-09-11 N/A N/A
Angular is a development platform for building mobile and desktop web applications using TypeScript/JavaScript and other languages. Angular uses a DI container (the "platform injector") to hold request-specific state during server-side rendering. For historical reasons, the container was stored as a JavaScript module-scoped global variable. When multiple requests are processed concurrently, they could inadvertently share or overwrite the global injector state. In practical terms, this can lead to one request responding with data meant for a completely different request, leaking data or tokens included on the rendered page or in response headers. As long as an attacker had network access to send any traffic that received a rendered response, they may have been able to send a large number of requests and then inspect the responses for information leaks. The APIs `bootstrapApplication`, `getPlatform`, and `destroyPlatform` were vulnerable and required SSR-only breaking changes. The issue has been patched in all active release lines as well as in the v21 prerelease. Patched packages include `@angular/platform-server` 21.0.0-next.3, 20.3.0, 19.2.15, and 18.2.14 and `@angular/ssr` 21.0.0-next.3, 20.3.0, 19.2.16, and 18.2.21. Several workarounds are available. Disable SSR via Server Routes or builder options, remove any asynchronous behavior from custom `bootstrap` functions, remove uses of `getPlatform()` in application code, and/or ensure that the server build defines `ngJitMode` as false.
CVE-2025-58296 1 Huawei 1 Harmonyos 2025-09-11 N/A 7.5 HIGH
Race condition vulnerability in the audio module. Impact: Successful exploitation of this vulnerability may affect function stability.
CVE-2025-58313 1 Huawei 1 Harmonyos 2025-09-11 N/A 5.1 MEDIUM
Race condition vulnerability in the device standby module. Impact: Successful exploitation of this vulnerability may cause feature exceptions of the device standby module.
CVE-2025-32421 1 Vercel 1 Next.js 2025-09-10 N/A 3.7 LOW
Next.js is a React framework for building full-stack web applications. Versions prior to 14.2.24 and 15.1.6 have a race-condition vulnerability. This issue only affects the Pages Router under certain misconfigurations, causing normal endpoints to serve `pageProps` data instead of standard HTML. This issue was patched in versions 15.1.6 and 14.2.24 by stripping the `x-now-route-matches` header from incoming requests. Applications hosted on Vercel's platform are not affected by this issue, as the platform does not cache responses based solely on `200 OK` status without explicit `cache-control` headers. Those who self-host Next.js deployments and are unable to upgrade immediately can mitigate this vulnerability by stripping the `x-now-route-matches` header from all incoming requests at the content development network and setting `cache-control: no-store` for all responses under risk. The maintainers of Next.js strongly recommend only caching responses with explicit cache-control headers.
CVE-2025-7954 1 Shopware 1 Shopware 2025-09-10 N/A 8.1 HIGH
A race condition vulnerability has been identified in Shopware's voucher system of Shopware v6.6.10.4 that allows attackers to bypass intended voucher restrictions and exceed usage limitations.
CVE-2025-20039 1 Intel 4 Proset\/wireless Wifi, Wi-fi 7 Be200, Wi-fi 7 Be201 and 1 more 2025-09-10 N/A 6.6 MEDIUM
Race condition for some Intel(R) PROSet/Wireless WiFi Software for Windows before version 23.100 may allow an unauthenticated user to potentially enable denial of service via adjacent access.
CVE-2025-49456 1 Zoom 5 Meeting Software Development Kit, Rooms, Rooms Controller and 2 more 2025-09-08 N/A 6.2 MEDIUM
Race condition in the installer for certain Zoom Clients for Windows may allow an unauthenticated user to impact application integrity via local access.
CVE-2025-48533 1 Google 1 Android 2025-09-05 N/A 7.0 HIGH
In multiple locations, there is a possible way to use apps linked from a context menu of a lockscreen app due to a race condition. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation.