Vulnerabilities (CVE)

Filtered by CWE-125
Total 7228 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2021-38107 1 Corel 1 Coreldraw 2020 2024-11-21 4.3 MEDIUM 5.5 MEDIUM
CdrCore.dll in Corel DrawStandard 2020 22.0.0.474 is affected by an Out-of-bounds Read vulnerability when parsing a crafted file. An unauthenticated attacker could leverage this vulnerability to access unauthorized system memory in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious CDR file.
CVE-2021-38106 1 Corel 1 Presentations 2020 2024-11-21 4.3 MEDIUM 5.5 MEDIUM
UAX200.dll in Corel Presentations 2020 20.0.0.200 is affected by an Out-of-bounds Read vulnerability when parsing a crafted file. An unauthenticated attacker could leverage this vulnerability to access unauthorized system memory in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious PPT file.
CVE-2021-38105 1 Corel 1 Presentations 2020 2024-11-21 4.3 MEDIUM 5.5 MEDIUM
IPPP82.FLT in Corel Presentations 2020 20.0.0.200 is affected by an Out-of-bounds Read vulnerability when parsing a crafted file. An unauthenticated attacker could leverage this vulnerability to access unauthorized system memory in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious PPT file. This is different from CVE-2021-38102.
CVE-2021-38104 1 Corel 1 Presentations 2020 2024-11-21 4.3 MEDIUM 5.5 MEDIUM
IPPP72.FLT in Corel Presentations 2020 20.0.0.200 is affected by an Out-of-bounds Read vulnerability when parsing a crafted file. An unauthenticated attacker could leverage this vulnerability to access unauthorized system memory in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious PPT file.
CVE-2021-38102 1 Corel 1 Presentations 2020 2024-11-21 4.3 MEDIUM 5.5 MEDIUM
IPPP82.FLT in Corel Presentations 2020 20.0.0.200 is affected by an Out-of-bounds Read vulnerability when parsing a crafted file. An unauthenticated attacker could leverage this vulnerability to access unauthorized system memory in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious PPT file. This is different from CVE-2021-38105.
CVE-2021-37992 2 Debian, Google 2 Debian Linux, Chrome 2024-11-21 6.8 MEDIUM 8.8 HIGH
Out of bounds read in WebAudio in Google Chrome prior to 95.0.4638.54 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.
CVE-2021-37972 3 Debian, Fedoraproject, Google 3 Debian Linux, Fedora, Chrome 2024-11-21 6.8 MEDIUM 8.8 HIGH
Out of bounds read in libjpeg-turbo in Google Chrome prior to 94.0.4606.54 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.
CVE-2021-37687 1 Google 1 Tensorflow 2024-11-21 2.1 LOW 5.5 MEDIUM
TensorFlow is an end-to-end open source platform for machine learning. In affected versions TFLite's [`GatherNd` implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/gather_nd.cc#L124) does not support negative indices but there are no checks for this situation. Hence, an attacker can read arbitrary data from the heap by carefully crafting a model with negative values in `indices`. Similar issue exists in [`Gather` implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/gather.cc). We have patched the issue in GitHub commits bb6a0383ed553c286f87ca88c207f6774d5c4a8f and eb921122119a6b6e470ee98b89e65d721663179d. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37685 1 Google 1 Tensorflow 2024-11-21 2.1 LOW 5.5 MEDIUM
TensorFlow is an end-to-end open source platform for machine learning. In affected versions TFLite's [`expand_dims.cc`](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/expand_dims.cc#L36-L50) contains a vulnerability which allows reading one element outside of bounds of heap allocated data. If `axis` is a large negative value (e.g., `-100000`), then after the first `if` it would still be negative. The check following the `if` statement will pass and the `for` loop would read one element before the start of `input_dims.data` (when `i = 0`). We have patched the issue in GitHub commit d94ffe08a65400f898241c0374e9edc6fa8ed257. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37679 1 Google 1 Tensorflow 2024-11-21 4.6 MEDIUM 7.1 HIGH
TensorFlow is an end-to-end open source platform for machine learning. In affected versions it is possible to nest a `tf.map_fn` within another `tf.map_fn` call. However, if the input tensor is a `RaggedTensor` and there is no function signature provided, code assumes the output is a fully specified tensor and fills output buffer with uninitialized contents from the heap. The `t` and `z` outputs should be identical, however this is not the case. The last row of `t` contains data from the heap which can be used to leak other memory information. The bug lies in the conversion from a `Variant` tensor to a `RaggedTensor`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/ragged_tensor_from_variant_op.cc#L177-L190) does not check that all inner shapes match and this results in the additional dimensions. The same implementation can result in data loss, if input tensor is tweaked. We have patched the issue in GitHub commit 4e2565483d0ffcadc719bd44893fb7f609bb5f12. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37672 1 Google 1 Tensorflow 2024-11-21 2.1 LOW 5.5 MEDIUM
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can read from outside of bounds of heap allocated data by sending specially crafted illegal arguments to `tf.raw_ops.SdcaOptimizerV2`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/sdca_internal.cc#L320-L353) does not check that the length of `example_labels` is the same as the number of examples. We have patched the issue in GitHub commit a4e138660270e7599793fa438cd7b2fc2ce215a6. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37670 1 Google 1 Tensorflow 2024-11-21 2.1 LOW 5.5 MEDIUM
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can read from outside of bounds of heap allocated data by sending specially crafted illegal arguments to `tf.raw_ops.UpperBound`. The [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/kernels/searchsorted_op.cc#L85-L104) does not validate the rank of `sorted_input` argument. A similar issue occurs in `tf.raw_ops.LowerBound`. We have patched the issue in GitHub commit 42459e4273c2e47a3232cc16c4f4fff3b3a35c38. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37664 1 Google 1 Tensorflow 2024-11-21 3.6 LOW 7.3 HIGH
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can read from outside of bounds of heap allocated data by sending specially crafted illegal arguments to `BoostedTreesSparseCalculateBestFeatureSplit`. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/boosted_trees/stats_ops.cc) needs to validate that each value in `stats_summary_indices` is in range. We have patched the issue in GitHub commit e84c975313e8e8e38bb2ea118196369c45c51378. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37659 1 Google 1 Tensorflow 2024-11-21 4.6 MEDIUM 7.3 HIGH
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in all binary cwise operations that don't require broadcasting (e.g., gradients of binary cwise operations). The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/cwise_ops_common.h#L264) assumes that the two inputs have exactly the same number of elements but does not check that. Hence, when the eigen functor executes it triggers heap OOB reads and undefined behavior due to binding to nullptr. We have patched the issue in GitHub commit 93f428fd1768df147171ed674fee1fc5ab8309ec. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37655 1 Google 1 Tensorflow 2024-11-21 4.6 MEDIUM 7.3 HIGH
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a read from outside of bounds of heap allocated data by sending invalid arguments to `tf.raw_ops.ResourceScatterUpdate`. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/resource_variable_ops.cc#L919-L923) has an incomplete validation of the relationship between the shapes of `indices` and `updates`: instead of checking that the shape of `indices` is a prefix of the shape of `updates` (so that broadcasting can happen), code only checks that the number of elements in these two tensors are in a divisibility relationship. We have patched the issue in GitHub commit 01cff3f986259d661103412a20745928c727326f. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37654 1 Google 1 Tensorflow 2024-11-21 3.6 LOW 7.3 HIGH
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can trigger a crash via a `CHECK`-fail in debug builds of TensorFlow using `tf.raw_ops.ResourceGather` or a read from outside the bounds of heap allocated data in the same API in a release build. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/resource_variable_ops.cc#L660-L668) does not check that the `batch_dims` value that the user supplies is less than the rank of the input tensor. Since the implementation uses several for loops over the dimensions of `tensor`, this results in reading data from outside the bounds of heap allocated buffer backing the tensor. We have patched the issue in GitHub commit bc9c546ce7015c57c2f15c168b3d9201de679a1d. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37651 1 Google 1 Tensorflow 2024-11-21 4.6 MEDIUM 7.1 HIGH
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation for `tf.raw_ops.FractionalAvgPoolGrad` can be tricked into accessing data outside of bounds of heap allocated buffers. The [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/fractional_avg_pool_op.cc#L205) does not validate that the input tensor is non-empty. Thus, code constructs an empty `EigenDoubleMatrixMap` and then accesses this buffer with indices that are outside of the empty area. We have patched the issue in GitHub commit 0f931751fb20f565c4e94aa6df58d54a003cdb30. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37641 1 Google 1 Tensorflow 2024-11-21 3.6 LOW 7.3 HIGH
TensorFlow is an end-to-end open source platform for machine learning. In affected versions if the arguments to `tf.raw_ops.RaggedGather` don't determine a valid ragged tensor code can trigger a read from outside of bounds of heap allocated buffers. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/ragged_gather_op.cc#L70) directly reads the first dimension of a tensor shape before checking that said tensor has rank of at least 1 (i.e., it is not a scalar). Furthermore, the implementation does not check that the list given by `params_nested_splits` is not an empty list of tensors. We have patched the issue in GitHub commit a2b743f6017d7b97af1fe49087ae15f0ac634373. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37639 1 Google 1 Tensorflow 2024-11-21 4.6 MEDIUM 8.4 HIGH
TensorFlow is an end-to-end open source platform for machine learning. When restoring tensors via raw APIs, if the tensor name is not provided, TensorFlow can be tricked into dereferencing a null pointer. Alternatively, attackers can read memory outside the bounds of heap allocated data by providing some tensor names but not enough for a successful restoration. The [implementation](https://github.com/tensorflow/tensorflow/blob/47a06f40411a69c99f381495f490536972152ac0/tensorflow/core/kernels/save_restore_tensor.cc#L158-L159) retrieves the tensor list corresponding to the `tensor_name` user controlled input and immediately retrieves the tensor at the restoration index (controlled via `preferred_shard` argument). This occurs without validating that the provided list has enough values. If the list is empty this results in dereferencing a null pointer (undefined behavior). If, however, the list has some elements, if the restoration index is outside the bounds this results in heap OOB read. We have patched the issue in GitHub commit 9e82dce6e6bd1f36a57e08fa85af213e2b2f2622. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
CVE-2021-37635 1 Google 1 Tensorflow 2024-11-21 3.6 LOW 7.3 HIGH
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the implementation of sparse reduction operations in TensorFlow can trigger accesses outside of bounds of heap allocated data. The [implementation](https://github.com/tensorflow/tensorflow/blob/a1bc56203f21a5a4995311825ffaba7a670d7747/tensorflow/core/kernels/sparse_reduce_op.cc#L217-L228) fails to validate that each reduction group does not overflow and that each corresponding index does not point to outside the bounds of the input tensor. We have patched the issue in GitHub commit 87158f43f05f2720a374f3e6d22a7aaa3a33f750. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.