Total
7759 CVE
| CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
|---|---|---|---|---|---|
| CVE-2024-20949 | 1 Oracle | 1 Customer Interaction History | 2025-04-09 | N/A | 6.1 MEDIUM |
| Vulnerability in the Oracle Customer Interaction History product of Oracle E-Business Suite (component: Outcome-Result). Supported versions that are affected are 12.2.3-12.2.13. Easily exploitable vulnerability allows unauthenticated attacker with network access via HTTP to compromise Oracle Customer Interaction History. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Oracle Customer Interaction History, attacks may significantly impact additional products (scope change). Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Oracle Customer Interaction History accessible data as well as unauthorized read access to a subset of Oracle Customer Interaction History accessible data. CVSS 3.1 Base Score 6.1 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N). | |||||
| CVE-2006-6016 | 1 Wordpress | 1 Wordpress | 2025-04-09 | 4.0 MEDIUM | 6.5 MEDIUM |
| wp-admin/user-edit.php in WordPress before 2.0.5 allows remote authenticated users to read the metadata of an arbitrary user via a modified user_id parameter. | |||||
| CVE-2007-3847 | 3 Apache, Canonical, Fedoraproject | 4 Http Server, Ubuntu Linux, Fedora and 1 more | 2025-04-09 | 5.0 MEDIUM | N/A |
| The date handling code in modules/proxy/proxy_util.c (mod_proxy) in Apache 2.3.0, when using a threaded MPM, allows remote origin servers to cause a denial of service (caching forward proxy process crash) via crafted date headers that trigger a buffer over-read. | |||||
| CVE-2006-5393 | 1 Cisco | 1 Secure Desktop | 2025-04-09 | 2.1 LOW | 5.5 MEDIUM |
| Cisco Secure Desktop (CSD) does not require that the ClearPageFileAtShutdown (aka CCE-Winv2.0-407) registry value equals 1, which might allow local users to read certain memory pages that were written during another user's SSL VPN session. | |||||
| CVE-2009-2523 | 1 Microsoft | 1 Windows 2000 | 2025-04-09 | 10.0 HIGH | N/A |
| The License Logging Server (llssrv.exe) in Microsoft Windows 2000 SP4 allows remote attackers to execute arbitrary code via an RPC message containing a string without a null terminator, which triggers a heap-based buffer overflow in the LlsrLicenseRequestW method, aka "License Logging Server Heap Overflow Vulnerability." | |||||
| CVE-2022-47630 | 1 Arm | 1 Trusted Firmware-a | 2025-04-08 | N/A | 7.4 HIGH |
| Trusted Firmware-A through 2.8 has an out-of-bounds read in the X.509 parser for parsing boot certificates. This affects downstream use of get_ext and auth_nvctr. Attackers might be able to trigger dangerous read side effects or obtain sensitive information about microarchitectural state. | |||||
| CVE-2024-38797 | 2025-04-08 | N/A | 4.6 MEDIUM | ||
| EDK2 contains a vulnerability in the HashPeImageByType(). A user may cause a read out of bounds when a corrupted data pointer and length are sent via an adjecent network. A successful exploit of this vulnerability may lead to a loss of Integrity and/or Availability. | |||||
| CVE-2024-26702 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-04-08 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: iio: magnetometer: rm3100: add boundary check for the value read from RM3100_REG_TMRC Recently, we encounter kernel crash in function rm3100_common_probe caused by out of bound access of array rm3100_samp_rates (because of underlying hardware failures). Add boundary check to prevent out of bound access. | |||||
| CVE-2023-32017 | 1 Microsoft | 12 Windows 10 1507, Windows 10 1607, Windows 10 1809 and 9 more | 2025-04-08 | N/A | 7.8 HIGH |
| Microsoft PostScript Printer Driver Remote Code Execution Vulnerability | |||||
| CVE-2023-29373 | 1 Microsoft | 12 Windows 10 1507, Windows 10 1607, Windows 10 1809 and 9 more | 2025-04-08 | N/A | 8.8 HIGH |
| Microsoft ODBC Driver Remote Code Execution Vulnerability | |||||
| CVE-2023-32011 | 1 Microsoft | 12 Windows 10 1507, Windows 10 1607, Windows 10 1809 and 9 more | 2025-04-08 | N/A | 7.5 HIGH |
| Windows iSCSI Discovery Service Denial of Service Vulnerability | |||||
| CVE-2025-2137 | 1 Google | 1 Chrome | 2025-04-07 | N/A | 8.8 HIGH |
| Out of bounds read in V8 in Google Chrome prior to 134.0.6998.88 allowed a remote attacker to perform out of bounds memory access via a crafted HTML page. (Chromium security severity: Medium) | |||||
| CVE-2022-4645 | 2 Fedoraproject, Libtiff | 2 Fedora, Libtiff | 2025-04-04 | N/A | 6.8 MEDIUM |
| LibTIFF 4.4.0 has an out-of-bounds read in tiffcp in tools/tiffcp.c:948, allowing attackers to cause a denial-of-service via a crafted tiff file. For users that compile libtiff from sources, the fix is available with commit e8131125. | |||||
| CVE-2022-47881 | 1 Foxit | 2 Pdf Editor, Pdf Reader | 2025-04-04 | N/A | 6.5 MEDIUM |
| Foxit PDF Reader and PDF Editor 11.2.1.53537 and earlier has an Out-of-Bounds Read vulnerability. | |||||
| CVE-2021-47126 | 1 Linux | 1 Linux Kernel | 2025-04-04 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: ipv6: Fix KASAN: slab-out-of-bounds Read in fib6_nh_flush_exceptions Reported by syzbot: HEAD commit: 90c911ad Merge tag 'fixes' of git://git.kernel.org/pub/scm.. git tree: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git master dashboard link: https://syzkaller.appspot.com/bug?extid=123aa35098fd3c000eb7 compiler: Debian clang version 11.0.1-2 ================================================================== BUG: KASAN: slab-out-of-bounds in fib6_nh_get_excptn_bucket net/ipv6/route.c:1604 [inline] BUG: KASAN: slab-out-of-bounds in fib6_nh_flush_exceptions+0xbd/0x360 net/ipv6/route.c:1732 Read of size 8 at addr ffff8880145c78f8 by task syz-executor.4/17760 CPU: 0 PID: 17760 Comm: syz-executor.4 Not tainted 5.12.0-rc8-syzkaller #0 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:79 [inline] dump_stack+0x202/0x31e lib/dump_stack.c:120 print_address_description+0x5f/0x3b0 mm/kasan/report.c:232 __kasan_report mm/kasan/report.c:399 [inline] kasan_report+0x15c/0x200 mm/kasan/report.c:416 fib6_nh_get_excptn_bucket net/ipv6/route.c:1604 [inline] fib6_nh_flush_exceptions+0xbd/0x360 net/ipv6/route.c:1732 fib6_nh_release+0x9a/0x430 net/ipv6/route.c:3536 fib6_info_destroy_rcu+0xcb/0x1c0 net/ipv6/ip6_fib.c:174 rcu_do_batch kernel/rcu/tree.c:2559 [inline] rcu_core+0x8f6/0x1450 kernel/rcu/tree.c:2794 __do_softirq+0x372/0x7a6 kernel/softirq.c:345 invoke_softirq kernel/softirq.c:221 [inline] __irq_exit_rcu+0x22c/0x260 kernel/softirq.c:422 irq_exit_rcu+0x5/0x20 kernel/softirq.c:434 sysvec_apic_timer_interrupt+0x91/0xb0 arch/x86/kernel/apic/apic.c:1100 </IRQ> asm_sysvec_apic_timer_interrupt+0x12/0x20 arch/x86/include/asm/idtentry.h:632 RIP: 0010:lock_acquire+0x1f6/0x720 kernel/locking/lockdep.c:5515 Code: f6 84 24 a1 00 00 00 02 0f 85 8d 02 00 00 f7 c3 00 02 00 00 49 bd 00 00 00 00 00 fc ff df 74 01 fb 48 c7 44 24 40 0e 36 e0 45 <4b> c7 44 3d 00 00 00 00 00 4b c7 44 3d 09 00 00 00 00 43 c7 44 3d RSP: 0018:ffffc90009e06560 EFLAGS: 00000206 RAX: 1ffff920013c0cc0 RBX: 0000000000000246 RCX: dffffc0000000000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffffc90009e066e0 R08: dffffc0000000000 R09: fffffbfff1f992b1 R10: fffffbfff1f992b1 R11: 0000000000000000 R12: 0000000000000000 R13: dffffc0000000000 R14: 0000000000000000 R15: 1ffff920013c0cb4 rcu_lock_acquire+0x2a/0x30 include/linux/rcupdate.h:267 rcu_read_lock include/linux/rcupdate.h:656 [inline] ext4_get_group_info+0xea/0x340 fs/ext4/ext4.h:3231 ext4_mb_prefetch+0x123/0x5d0 fs/ext4/mballoc.c:2212 ext4_mb_regular_allocator+0x8a5/0x28f0 fs/ext4/mballoc.c:2379 ext4_mb_new_blocks+0xc6e/0x24f0 fs/ext4/mballoc.c:4982 ext4_ext_map_blocks+0x2be3/0x7210 fs/ext4/extents.c:4238 ext4_map_blocks+0xab3/0x1cb0 fs/ext4/inode.c:638 ext4_getblk+0x187/0x6c0 fs/ext4/inode.c:848 ext4_bread+0x2a/0x1c0 fs/ext4/inode.c:900 ext4_append+0x1a4/0x360 fs/ext4/namei.c:67 ext4_init_new_dir+0x337/0xa10 fs/ext4/namei.c:2768 ext4_mkdir+0x4b8/0xc00 fs/ext4/namei.c:2814 vfs_mkdir+0x45b/0x640 fs/namei.c:3819 ovl_do_mkdir fs/overlayfs/overlayfs.h:161 [inline] ovl_mkdir_real+0x53/0x1a0 fs/overlayfs/dir.c:146 ovl_create_real+0x280/0x490 fs/overlayfs/dir.c:193 ovl_workdir_create+0x425/0x600 fs/overlayfs/super.c:788 ovl_make_workdir+0xed/0x1140 fs/overlayfs/super.c:1355 ovl_get_workdir fs/overlayfs/super.c:1492 [inline] ovl_fill_super+0x39ee/0x5370 fs/overlayfs/super.c:2035 mount_nodev+0x52/0xe0 fs/super.c:1413 legacy_get_tree+0xea/0x180 fs/fs_context.c:592 vfs_get_tree+0x86/0x270 fs/super.c:1497 do_new_mount fs/namespace.c:2903 [inline] path_mount+0x196f/0x2be0 fs/namespace.c:3233 do_mount fs/namespace.c:3246 [inline] __do_sys_mount fs/namespace.c:3454 [inline] __se_sys_mount+0x2f9/0x3b0 fs/namespace.c:3431 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x4665f9 Code: ff ff c3 66 2e 0f 1f 84 ---truncated--- | |||||
| CVE-2024-6606 | 1 Mozilla | 2 Firefox, Thunderbird | 2025-04-04 | N/A | 8.2 HIGH |
| Clipboard code failed to check the index on an array access. This could have led to an out-of-bounds read. This vulnerability affects Firefox < 128 and Thunderbird < 128. | |||||
| CVE-2021-47244 | 1 Linux | 1 Linux Kernel | 2025-04-04 | N/A | 6.2 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: mptcp: Fix out of bounds when parsing TCP options The TCP option parser in mptcp (mptcp_get_options) could read one byte out of bounds. When the length is 1, the execution flow gets into the loop, reads one byte of the opcode, and if the opcode is neither TCPOPT_EOL nor TCPOPT_NOP, it reads one more byte, which exceeds the length of 1. This fix is inspired by commit 9609dad263f8 ("ipv4: tcp_input: fix stack out of bounds when parsing TCP options."). | |||||
| CVE-2021-47274 | 1 Linux | 1 Linux Kernel | 2025-04-04 | N/A | 9.8 CRITICAL |
| In the Linux kernel, the following vulnerability has been resolved: tracing: Correct the length check which causes memory corruption We've suffered from severe kernel crashes due to memory corruption on our production environment, like, Call Trace: [1640542.554277] general protection fault: 0000 [#1] SMP PTI [1640542.554856] CPU: 17 PID: 26996 Comm: python Kdump: loaded Tainted:G [1640542.556629] RIP: 0010:kmem_cache_alloc+0x90/0x190 [1640542.559074] RSP: 0018:ffffb16faa597df8 EFLAGS: 00010286 [1640542.559587] RAX: 0000000000000000 RBX: 0000000000400200 RCX: 0000000006e931bf [1640542.560323] RDX: 0000000006e931be RSI: 0000000000400200 RDI: ffff9a45ff004300 [1640542.560996] RBP: 0000000000400200 R08: 0000000000023420 R09: 0000000000000000 [1640542.561670] R10: 0000000000000000 R11: 0000000000000000 R12: ffffffff9a20608d [1640542.562366] R13: ffff9a45ff004300 R14: ffff9a45ff004300 R15: 696c662f65636976 [1640542.563128] FS: 00007f45d7c6f740(0000) GS:ffff9a45ff840000(0000) knlGS:0000000000000000 [1640542.563937] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [1640542.564557] CR2: 00007f45d71311a0 CR3: 000000189d63e004 CR4: 00000000003606e0 [1640542.565279] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [1640542.566069] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [1640542.566742] Call Trace: [1640542.567009] anon_vma_clone+0x5d/0x170 [1640542.567417] __split_vma+0x91/0x1a0 [1640542.567777] do_munmap+0x2c6/0x320 [1640542.568128] vm_munmap+0x54/0x70 [1640542.569990] __x64_sys_munmap+0x22/0x30 [1640542.572005] do_syscall_64+0x5b/0x1b0 [1640542.573724] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [1640542.575642] RIP: 0033:0x7f45d6e61e27 James Wang has reproduced it stably on the latest 4.19 LTS. After some debugging, we finally proved that it's due to ftrace buffer out-of-bound access using a debug tool as follows: [ 86.775200] BUG: Out-of-bounds write at addr 0xffff88aefe8b7000 [ 86.780806] no_context+0xdf/0x3c0 [ 86.784327] __do_page_fault+0x252/0x470 [ 86.788367] do_page_fault+0x32/0x140 [ 86.792145] page_fault+0x1e/0x30 [ 86.795576] strncpy_from_unsafe+0x66/0xb0 [ 86.799789] fetch_memory_string+0x25/0x40 [ 86.804002] fetch_deref_string+0x51/0x60 [ 86.808134] kprobe_trace_func+0x32d/0x3a0 [ 86.812347] kprobe_dispatcher+0x45/0x50 [ 86.816385] kprobe_ftrace_handler+0x90/0xf0 [ 86.820779] ftrace_ops_assist_func+0xa1/0x140 [ 86.825340] 0xffffffffc00750bf [ 86.828603] do_sys_open+0x5/0x1f0 [ 86.832124] do_syscall_64+0x5b/0x1b0 [ 86.835900] entry_SYSCALL_64_after_hwframe+0x44/0xa9 commit b220c049d519 ("tracing: Check length before giving out the filter buffer") adds length check to protect trace data overflow introduced in 0fc1b09ff1ff, seems that this fix can't prevent overflow entirely, the length check should also take the sizeof entry->array[0] into account, since this array[0] is filled the length of trace data and occupy addtional space and risk overflow. | |||||
| CVE-2024-26789 | 1 Linux | 1 Linux Kernel | 2025-04-04 | N/A | 7.1 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: crypto: arm64/neonbs - fix out-of-bounds access on short input The bit-sliced implementation of AES-CTR operates on blocks of 128 bytes, and will fall back to the plain NEON version for tail blocks or inputs that are shorter than 128 bytes to begin with. It will call straight into the plain NEON asm helper, which performs all memory accesses in granules of 16 bytes (the size of a NEON register). For this reason, the associated plain NEON glue code will copy inputs shorter than 16 bytes into a temporary buffer, given that this is a rare occurrence and it is not worth the effort to work around this in the asm code. The fallback from the bit-sliced NEON version fails to take this into account, potentially resulting in out-of-bounds accesses. So clone the same workaround, and use a temp buffer for short in/outputs. | |||||
| CVE-2023-0396 | 1 Zephyrproject | 1 Zephyr | 2025-04-03 | N/A | 6.8 MEDIUM |
| A malicious / defective bluetooth controller can cause buffer overreads in the most functions that process HCI command responses. | |||||
